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ABSTRACT
Autonomous vehicles can behave unexpectedly, as automated
systems that rely on data-driven machine learning have shown to
infer false predictions or misclassifications, e.g., due to stickers on
traffic signs, and thus fail in some situations. In critical situations,
system designs must guarantee safety and reliability. However, in
non-critical situations, the possibility of failures resulting in
unexpected behaviour should be considered, as they negatively
impact the passenger’s user experience and acceptance. We
analyse if an interactive conversational user interface can mitigate
negative experiences when interacting with imperfect artificial
intelligence systems. In our quantitative interactive online survey
(N=113) and comparative qualitative Wizard of Oz study (N=8),
users were able to interact with an autonomous SAE level 5 driving
simulation. Our findings demonstrate that increased transparency
improves user experience and acceptance. Furthermore, we show
that additional information in failure scenarios can lead to an
information dilemma and should be implemented carefully.

CCS CONCEPTS
•Human-centered computing→User studies; Empirical studies
in visualization; Empirical studies in HCI.
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1 INTRODUCTION
Daily interactions with systems that are based on methods of
artificial intelligence (AI), particularly machine learning (ML),
often lack further insights into their behaviour [Rahwan et al.
2019]. At the same time, allowing users and stakeholders to
understand system behaviour better is usually recommended, if
not required [High-Level Expert Group on AI 2019; P. Jonathon
Phillips et al. 2020]. Systems thus have to provide some means of
transparency of their behaviour. Furthermore, the system design
benefits from aligning with aspects of a positive user
experience (UX) to support positive user interactions. One solution
to address transparency and UX in AI-based systems can be
achieved by system explanations [Felzmann et al. 2020]. Designing
optimal ways to provide explanations as well as their technical
feasibility has thus become an active field of research [Ehsan et al.
2021; Miller 2019].

While technical improvements aim for decreasing system failures
to a minimum, uncertainty in data-driven ML-based methods will
always prevail. ML results can be unexpected or simply wrong.
We assume that such system failures, like wrong predictions or
misclassifications, cannot be eliminated entirely.

For the area of autonomous driving, studies have investigated
the technical and pedestrian side of failures for external
human-machine interaction (HMI) [Kuhn et al. 2020a,b; M. Faas
et al. 2021], i.e., how to design the communication between
vehicles and their surroundings. Yet, the communication in failure
cases in autonomous driving should also address the internal HMI
to avoid negative UXs for passengers. Especially for SAE level 5
[SAE On-Road Automated Vehicle Standards Committee and
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others 2018] autonomous driving, where vehicles do not require
human control at any point of their operation and might not come
with a steering wheel or pedals anymore. In general, the SAE
levels define the level of driving automation ranging from level 0
with no automation but warnings and momentary assistance to
level 5 with fully automated driving without passenger control.
Furthermore, levels 0 to 2 are grouped as driver support features
and require vehicle supervision at all times. The last three levels
are grouped as automated driving features, with level 3 requiring
driver takeover when needed. Levels 4 and 5 never require any
takeover. However, level 4 is considered to be a high automation
level since the automation is only applicable in some driving
modes. In contrast, level 5 is considered full automation since the
system can handle all driving modes.

Removing the possibility of control from passengers might
create new challenges regarding the internal HMI communication,
especially in failure cases or ambiguous situations. For example,
providing explanations when the autonomous vehicle (AV) stops
in front of a crosswalk due to a misclassification even though the
pedestrian does not want to cross. Although we expect occurring
mistakes to be non-safety-critical, they are likely to negatively
impact the user’s experience, increase a feeling of uncertainty and
therefore diminish the acceptance of autonomous vehicles.

Furthermore, failures could even be embraced as part of the
interaction design. In the context of automated driving, this has
been described as imperfection by design [Fridman 2018], indicating
that system flaws could also be seen as features to make users
transparently aware of system limitations. While in some domains,
when system limitations might merely be seen as an annoyance,
e.g., recommender systems of online shopping sites offering
advertisements of no interest, users may still continue to use those
products and services. In other domains, they will shy away from
using products if their reliability affects their perceived feeling of
control, understanding, or even safety. Supporting these aspects by
the design of AI applications is essential for user acceptance, and
trust [Stanton and Jensen 2021]. However, when investigating the
effects on trust, time of usage is a major influence. Recent studies
have pointed out the effect of repeated interactions on trust in
intelligent systems [Rossi et al. 2020; van Maris et al. 2017]. Since
this paper focuses on first-time users, we focus on user acceptance
and transparency in SAE level 5 autonomous driving to support a
positive UX of imperfect ML systems. In particular by explicitly
addressing failures with additional explanatory information.

As explanations in AI system design increase system
transparency and understanding as well as user acceptance
[Mcknight et al. 2011; Mohseni et al. 2018; Samek and Müller 2019],
we endeavour to apply these findings particularly to the use case
of failures, i.e., the inherent imperfection of an AI system in the
specific context of SAE level 5 autonomous driving. Our study
investigates if the expected negative UX caused by system failures
can be mitigated through proactive explanations given by a
conversational user interface. Moreover, users are provided with
the option to receive further information through explanations
upon request and the option to indicate that they would have liked
to take over the driving task. It is important to mitigate the need to
take over since it will not be possible in SAE level 5 autonomous
driving and was not actually possible in our study design.

Compared to related work discussed in the next section, we
analyse how users deal with system flaws in ML systems and if
their expected negative UXs can be mitigated by explanatory
information. We focus on non-critical failure situations, thus
fundamentally wrong driving behaviour that may even lead to
road casualties, is explicitly excluded for the scope of our
investigation. Our findings show that system designs face an
information dilemma: neither a transparent system design nor an
increase in transparency with additional explanatory information
can improve the UX in failure situations. We discuss that a
human-in-the-loop approach could thus be a solution for future
designs.

2 RELATEDWORK
2.1 Imperfect AI and Explainable AI
So far, some studies have addressed research questions regarding
the interaction design of imperfect systems, yet clear design
recommendations are still scarce. It has been shown that
expectation management is crucial for designing systems that only
give result predictions with a certain degree of confidence [Hase
and Bansal 2020]. User acceptance increases when users are made
aware of system limitations and can understand the system
behaviour for them to make informed decisions [Kocielnik et al.
2019]. Explanations of system predictions positively affect user
acceptance and understanding, yet explanations fall short of a
positive effect in failure situations [Riveiro and Thill 2021].
Additional explanations also cause a higher awareness of users,
while minimum explanations can have a negative effect
[Papenmeier et al. 2019].

Several methods have been developed to make implicit AI
system behaviour transparent by Explainable Artificial
Intelligence (XAI) or interpretability [Adadi and Berrada 2018].
However, how such methods can immediately help to make
systems transparent to end-users is yet to be determined [Samek
and Müller 2019] and needs to be defined by various evaluation
criteria [Mohseni et al. 2018]. For instance, in the context of
human-AI interaction, further contextual aspects are relevant for a
transparent interaction beyond XAI methods [Ehsan et al. 2021].
Transparency should thus be defined as a design criterion
throughout the system development [Felzmann et al. 2020].
Nevertheless, the factors imposed by the human partner in the
interaction context need further analysis beyond technically
available explanations [Wäfler and Schmid 2020]. For instance,
explanations have to be seen in the context of their complexity, as
they lose their benefit when becoming incomprehensible to users
[Ai et al. 2021]. For expert users and developers though,
interactive visualisation have been shown to increase usability
[Wang et al. 2019].

A permanent inner dialogue of a system can provide insights into
system behaviour in cooperative scenarios [Pipitone and Chella
2021], yet feasibility beyond robotic (anthropomorphic) applications
needs further investigation. Research has also demonstrated how
users can be misled through manipulated explanations regarding
the AI system’s trustworthiness [Lakkaraju and Bastani 2020]. Yet,
a different study, where systems that automatically translate source
code into different languages, has shown how users can experience
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a positive co-creation situation with a system while being aware of
its imperfection [Weisz et al. 2021].

For certain use cases, such as system querying for medical
decisions, refinements by users during system interactions are a
solution for coping with imperfect results and increasing
interaction experiences and user understanding [Cai et al. 2019].

2.2 User Experience and Explainable AI in
Autonomous Driving

The design of interactive systems focuses not only on providing
seamless functionality but also on creating positive emotions, for
example by focussing on the fulfilment of human needs, among
the resulting subjective and individual experiences [Forlizzi and
Battarbee 2004; Hassenzahl 2010; Hassenzahl and Tractinsky 2006;
Law et al. 2009]. This UX is thereby equally important and
connected to user acceptance and usability. While reliability in
interactive system behaviour is essential to a good design [Nielsen
1994], ML-based systems inherently run the risk of providing
wrong predictions, violating best practices of interactive system
design. In this regard, supporting user acceptance, usability and
thus a positive UX is essential to automated systems.

This also applies in the context of autonomous driving, which is
based on automated systems. Studies show that transparent
communication is essential for trust and user acceptance in AVs
[Abraham et al. 2016; Ha et al. 2020; Iclodean et al. 2020; Koo et al.
2015]. Different uni- and multimodal feedback modalities for
making vehicles and AVs more transparent, hence designing for
XAI communication, have been researched, using auditory,
vibrotactile, visual, textual, light, augmented reality and on-device
(smartphone) cues. Such design methods comprise general driver
warning (see for example [Ho et al. 2005; Politis et al. 2013, 2015b,
2014]), takeover requests (see for example [Borojeni et al. 2016;
Geitner et al. 2019; Gold et al. 2013; Huang et al. 2019; Melcher
et al. 2015; Petermeijer et al. 2017; Politis et al. 2015a, 2017;
Salminen et al. 2019; Telpaz et al. 2017; Walch et al. 2015; Zeeb
et al. 2015]), or uncertainty communication (see for example
[Beller et al. 2013; Faltaous et al. 2018; Kunze et al. 2018; Noah et al.
2017; Seppelt and Lee 2007]). In particular, it has also been shown
that there is a demand by users to receive additional information
in case of unexpected behaviour of a vehicle [Wiegand et al. 2020].

XAI pursues the goal of the clarification and enhancement of
the AI system interaction benefitting the end users, in our case
the passenger. Therefore, it is crucial to take into account that
passengers require or prefer various explanations based on the
situation or the desired result [Miller 2019], which is consistent
with the subjective character of UX. However, while many studies
looked at different uni- and multimodal feedback modalities in
autonomous driving, few have focussed on the combination of UX
and XAI. Large et al. [2019] were able to show that transparent
communication can increase the UX. We were able to confirm this
effect in another study [Schneider et al. 2021a], as were Detjen
et al. [2021] and Dandekar et al. [2022]. Furthermore, we were able
to show that additional explanatory information in SAE level 5
autonomous driving not only prevents negative experiences during
or after the ride but can increase the perceived feeling of safety
and control even though users cannot interfere with the driving

task [Schneider et al. 2021b,c]. We demonstrated that the positive
effect of additional information on UX was fully mitigated by the
loss of subjective feeling of control, which describes the users’
impression of having sufficient control over the system and the
situation as a whole [Schneider et al. 2021b]. Moreover, users also
show individual preferences regarding the amount of information
received in situations and their desire to take over the driving task
[Park et al. 2020].

While explanations for transparent system design in autonomous
driving have been applied at various system levels and different user
groups in mind [Omeiza et al. 2021], we particularly investigate
the handling of (non-critical) system failures with explanations
in autonomous driving with different feedback modalities in the
following.

3 EXPERIMENTAL SETUP
3.1 Prototype
In the context of SAE level 5 autonomous driving, where no human
attention or interaction is required, we developed an interactive
conversational user interface using the Telegram messenger to
provide passengers with live feedback about driving situations and
the AV’s perception of those on a central display. In a prior study, we
showed that text is a pragmatic way to communicate information in
autonomous driving [Schneider et al. 2021a]. To avoid information
overflow and allow for approximating the optimal level of detail,
the system displays short text messages about the AV’s perception
of driving situations to explain its reactions. For example, the AV
brakes in front of a crosswalk and displays the message "I spotted a
person on the side of the road". It furthermore offers passengers the
possibility to receive more detailed information on demand. This
includes a longer textual description of the situation, visualisations
and object highlighting of what the vehicle recognised in a given
driving scene (see Figure 1).

Our prototype presents users a 2.5km long route (see Figure 2)
with six different driving situations (see Table 1). The first three
are regular situations where nothing unusual happens. The last
three are failure situations where the AV did not interpret a
situation correctly and therefore performed a wrong action. These
are examples of potential difficulties for scene understanding and
misclassifications of the situation or the intent of other road users
by an autonomous driving system [Janai et al. 2020]. The car was
driving with a 50km/h limit for the first three situations and a
30km/h limit for the last three situations, according to the speed
limit given by the public road signs for the route.

3.2 Experiment Design
We conducted a mixed-method within- and between-subjects
study as an online- and on-site experiment. Due to the health and
safety legislation during the pandemic, the number of on-site
participants was limited. The primary purpose of the online study
was to collect quantitative data in the form of questionnaires.
However, participants were also given a text field for comments to
leave qualitative feedback. The main purpose of the on-site
experiment was to collect qualitative data in the form of
think-aloud statements [Lewis 1982] and participant observation.
A summary of the experimental design can be seen in Figure 4.
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Figure 1: Screenshot of the conversational user interface and the traffic jam
fail situation. The user selected the second option, and therefore a more
descriptive text and image were displayed.

1
2

3

4

5

6

Figure 2: Illustration of the simulated
autonomous drive route with the six
different situations.

Table 1: At six locations of the route during the simulated autonomous driving setup, the conversational system shows
information about the current driving situation and provides additional information to passengers upon request, i.e., passengers
were able to select the option “I would like to have more information”.

No. Situation Displayed Description Explanation upon Request
(1) The AV correctly detects a crosswalk where no

pedestrian is crossing.
”I have detected a pedestrian
crossing.”

An image of the crosswalk with a highlight is
shown.

(2) The AV correctly detects a green traffic light. ”I have detected a traffic
light.”

An image of the traffic light with a highlight
is shown.

(3) The AV correctly detects a green traffic light. ”I have detected a traffic
light.”

An image of the traffic light with a highlight
is shown.

(4) The AV misinterprets a person standing next to a
crosswalk as someone planning to cross the road. The
person has no intent to do so, yet, the AV does not
continue the drive for 10 seconds.

”I detected a person at the
roadside.”

An image of the crosswalk with the pedestrian
highlighted is shown. ”I have detected a
pedestrian at the side of the road who might
plan to walk onto the road. I’ll wait until the
pedestrian has crossed the road.”

(5) The AVmisinterprets multiple parked cars as the end of a
traffic jam and comes to a stop behind them. It continues
the drive after 12 seconds and passes the parked cars.

”This ride will be delayed a
bit.”

An image of the crosswalk with the pedestrian
highlighted is shown. ”My sensors have
detected the end of a traffic jam, so
unfortunately the journey will be delayed.”

(6) The AV misinterprets an advertisement poster showing
an advert campaign with a stop sign as a regular stop
sign and comes to a halt. It continues the drive after the
complete stop.

“I have spotted a stop sign.” An image of the highlighted advertisement
poster is shown.

3.2.1 Online Experiment. For the online experiment, we
developed an interactive online questionnaire in which the
different driving situations and text responses were shown as a
video (see Figure 3a and Appendix A). Participants were presented
with a pre-recorded autonomous drive, which took 4:50 minutes.
After every situation, they were asked if they hypothetically would
have preferred to take over the driving task. However, they had no
option to actually take over control, as we focused on SAE level 5.
Furthermore, the participants of the online experiment were
divided into two groups (control and experimental). In contrast to

the control group, the participants of the experimental group were
asked after every situation if they wanted to request more
information. If so, they were directed to an additional page of the
online-questionnaire where textual information and an image of
the situation were displayed. We decided on this approach to be
able to evaluate the wish for additional information and the effect
of the provided information on the UX in contrast to having no
option for additional information. Since the participants were able
to request additional information through the user interface and
indicate their preference to take over the driving task, behavioural
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(a) Online Visualisation (b) On-site Setup

Figure 3: (a) Screenshot of the online-experiment. (b) Photos of the onsite-experiment. A curtain separated driver and passenger.
A tablet with the conversational user interface was mounted in front of the passenger.

general
introduction

online experiment


on-site experiment

control group: 

pre-recorded ride without

more information

experimental group: 
pre-recorded ride with

more information

experimental group: 
real-life drive with more

information

Collected Data:

UEQ-S,  AVAM (reduced), feeling of

control, transparency, trust in
automation, IE-4 scale, qualitative

feedback

quantitative

qualitative

qualitative

Figure 4: Study setup.

data could be collected in addition to the attitudinal data from the
questionnaires.

3.2.2 On-Site Experiment. For the on-site experiment, we chose to
investigate further the experimental condition in which
participants were able to request feedback from the system. By
doing so, deeper insights explaining the collected attitudinal and
behavioural data from the quantitative study could be derived. We
created an experiment adapted from a Wizard of Oz study [Kelley
1984] with an electric vehicle. The route and situations were the
same as in the online experiment. We installed a black curtain to
separate the passenger from the driver to emulate an SAE level 5
autonomous drive. Participants were generally introduced to the
experiment and informed that a driver is present. However, they
could not see or interact with the driver due to the curtain. We
installed a tablet in front of the passenger where the
conversational user interface was displayed and could be
interacted with (see Figure 3b). Unlike in the online experiment, all
participants could request more information. Furthermore,
participants were asked to verbalise their thoughts during the
experiment and to state if, in any situation, they would prefer to
take over the driving task. These participants also filled out the
same questionnaires as the online participants.

3.2.3 Questionnaires. After experiencing the simulated
autonomous ride (on-site or online), the participants filled out
multiple questionnaires:

1) The User Experience Questionnaire - Short (UEQ-S)[Schrepp
et al. 2017] to measure their user experience during the ride:
How would you rate the ride, especially in terms of vehicle
behaviour and communication?

2) A reduced version of the Autonomous Vehicle Acceptance
Model Questionnaire (AVAM) [Hewitt et al. 2019], focussing
on the variables attitude towards (using) technology, anxiety,
behavioural intention (to use the vehicle) and perceived safety.

3) A self-defined 3-item, 7-point Likert scale regarding the
feeling of control, see Table 2.

4) A self-defined 2-item, 7-point Likert scale regarding the
transparency of the system, see Table 2.

5) A reduced version of the questionnaire by Körber[Körber
2018] that measures trust in automation, focussing on the
variables understanding/predictability and
reliability/competence.

6) The IE-4 scale[Kovaleva 2012] as a control variable to
measure the internal and external locus of control.

3.3 Participant Groups
3.3.1 Online Experiment. Overall, 113 participants (41 female) were
individually taking part in the online experiment (70 students, 37
employees, 6 other). 44 of them were in the control group that was
not provided with the option to request more information. Their
average age was 27.7 (SD=10.13). The remaining 69 participants
were in the experimental group that was provided with the option
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Table 2: Questionnaire items for the perceived feeling of
control and transparency. The AVAM questionnaire wording
was used to formulate the items for control, i.e., participants
received comparable formulations when giving feedback on
all items.

Perceived Feeling of Control
I would have adequate control over the information given
by the vehicle
I would have adequate control to get the information that I
need about the ride
I have the feeling of being in control during the ride
Transparency
The system is transparent
My interaction with the vehicle would be clear and
understandable (AVAM item 5)

to request more information. Their average age was 27.3 (SD=9.60).
We decided on a larger number of participants for the experimental
condition since participants were given an additional option to
interact with the system, i.e. requesting more information. By doing
so we ensured a sufficient number of participants for all possible
combinations of user choices, i.e. requesting more information and
requesting to take over the driving task hypothetically.

The majority of participants primarily travel by car with 55.8%,
24.8% travel by public transport, 11.5% by foot, 6.2% by bicycle and
1.7% use other main ways of transportation. Based on their prior
experiences with autonomous systems, participants are distributed
in: 36.3% had no prior experiences, 39.8% had experiences with
driving assistance such as cruise control, 16.8% had experiences
with semi-automatic driving systems such as lane assists, 5.3%
had experiences with highly automated driving systems such as
highway and takeover driving assistants, and 1.8% had experiences
with fully AVs in research contexts.

3.3.2 On-Site Experiment. For the on-site experiment, 8
participants (1 female) participated individually (6 students, 1
employee, 1 other). Their average age was 24.5 (SD=1.60). With 4
of them mainly travelling by public transport, 2 by foot, 1 by car
and 1 by bicycle. 3 of them had no prior experience with
autonomous systems, 2 had experience with driving assistance, 2
with semi-automatic driving systems and 1 with highly automated
driving systems.

3.4 Hypotheses
The assumed hypotheses for the experimental setup are:
H1a Hypothesis1a: A system failure increases the users’ need to

take over the driving task.
H1b Hypothesis1b: Additional information upon request (higher

level of transparency) reduce the users’ need to take over
the driving task when a system failure occurs.

H2a Hypothesis2a: Additional information upon request (higher
level of transparency) increase the user experience.

H2b Hypothesis2b: Additional information upon request (higher
level of transparency) increase the users’ system acceptance.

H2c Hypothesis2c: Additional information upon request (higher
level of transparency) increase the users’ subjective feeling
of control.

H3a Hypothesis3a: Users demand additional information when
experiencing system failure.

H3b Hypothesis3b: Additional information upon request (higher
level of transparency) can mitigate the negative effects of
system failures on user experience.

4 RESULTS
4.1 User Interactions During the Experiment
Figure 5 illustrates which decisions and feedback users decided to
select based on the experimental situations shown in Figure 4. On
average, more additional information is requested by users when
they encounter a situation that was misinterpreted by the system
in situations 4-6. Also, their desire to take over in these situations is
significantly higher (even though not possible due to SAE level 5).
As for the control group, which did not have the option to request
additional information, their desire to take over is twice as high.

4.2 Quantitative Results
To verify our hypotheses, a number of statistical analyses were
performed:

(1) exploratory, descriptive analyses were performed on the
questionnaire results

(2) Cronbach’s Alpha was calculated for all variables to ensure
an adequate internal consistency; Table 3 reports means,
standard deviations, and internal consistency

(3) intercorrelations of the studied variables, i.e., transparency,
dimensions of the AVAM and the UEQ-S were calculated (see
Table 4)

(4) in-between and between-subject comparisons using the
t-test and the ANOVA were performed. Since the direction
of effects was predicted, all results report a one-tailed
significance level of p<.05

Table 3: Descriptive measures of used variables.

Variables Min-Max Mean (SD) a
(1) Transparency 1-7 3.16 (1.33) .71
(2) PQ of the UX 1-7 3.33 (1.42) .81
(3) HQ of the UX 1-7 3.98 (1.49) .87
(4) Perc. feeling of control 1-7 3.63 (1.33) .80
(5) AVAM - Effort 1-7 2.50 (1.40) .68
(6) AVAM - Attitude 1-7 3.65 (1.53) .79
(7) AVAM - Anxiety 1-7 4.71 (1.44) .71
(8) AVAM - Intention to use 1-7 3.63 (1.60) .79
(9) AVAM - Safety 1-7 3.33 (1.42) .75

Due to a lack of comparability, the data from the on-site
experiment was not included in the statistical analysis. However, it
supports the findings from the online study, so the results seem to
be transferable to a real-life driving situation. Regarding
hypotheses H1a-H1b, the results show a significant difference in
take over requests between failure and non-failure situations
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experimental
group

Ø 26% request
more information

Ø 46% request
more information

Ø 35% would request
a takeover
after more information

Ø 10% would request
a takeover
after more information

situations 1-3
(correct interpretation)

situations 4-6
(misinterpretation)

control
group

Ø 23% would
request a takeover

Ø 72% would
request a takeover

situations 1-3
(correct interpretation)

situations 4-6
(misinterpretation)

Figure 5: Information requests and takeover decisions by situation and participant group.

Table 4: Intercorrelations between transparency and the dependent variables.

Variable (1) (2) (3) (4) (5) (6) (7) (8)
(1) Transparency
(2) Pragmatic Quality of the UX .39**
(3) Hedonic Quality of the UX .30** .46**
(4) Perc. feeling of control .58** .50** .33**
(5) AVAM - Effort .49** .38** .22** .40**
(6) AVAM - Attitude .34** .65** .48** .57** .33**
(7) AVAM - Anxiety -.24** -.25** -.04 -.35** -.17* -.26**
(8) AVAM - Intention to use .35** .54** .26** .53** .17* .65** -.48**
(9) AVAM - Safety .29** .36** .10 .47** .18* .49** -.59** .67**

(p<.01, t= -11.24). Hypothesis H1a could therefore be confirmed.
However, providing additional information upon request did not
influence the preference to take over the driving task in a failure
situation (p>.05, t= -.15). Hypothesis H1b was therefore rejected.

In order to verify the hypotheses H2a-H2c, the intercorrelations
between transparency and the dependent variables pragmatic
quality (PQ) of the UX (r=.39, p<.01), hedonic quality (HQ) of the
UX (r=.30, p<.01), all facets of the system acceptance (effort: r=.49,
p<.01; attitude: r=.34, p<.01; anxiety: r=-.24, p<.01; intention to use:
r=.35, p<.01; safety: r=.29, p<.01) and the perceived feeling of
control (r=.58, p<.01) were considered. As seen in Table 4,
significant correlations between the variables in the expected
direction were found in all cases.

We tested for direct and indirect effects using the Sobel test
(mediation analysis) to examine further the relationship between
transparency, the perceived feeling of control, and the UX. We
aimed to develop a deeper understanding of the mechanisms of
action of transparency in the context of UX.

Regarding the PQ of the UX, a significant indirect effect of
transparency mediated by the subjective feeling of control was
found (p<.01), with the standardised indirect effect being .39.
However, the direct effect of transparency on PQ was no longer
significant when taking the direct effect of subjective feeling of
control into account (p>.05). Therefore, the relationship between
transparency and the PQ of the UX is fully mediated by the
subjective feeling of control.

Accordingly, the indirect effect of transparency on the HQ of
the UX was examined. Again, a significant indirect effect of
transparency on HQ, mediated by the subjective feeling of control,
was found (p<.01), with the standardised indirect effect being .58.
When controlling for the direct effect of subjective feeling of
control, the direct effect of transparency on HQ was no longer
significant (p>.05). Therefore, the relationship between
transparency and HQ is fully mediated by the subjective feeling of
control.

However, there was no significant difference in the participants’
transparency level between the experimental groups. Additional
information upon request about the system failure did not increase
the subjective transparency level (p>.05, t= 1.63). Accordingly,
there was no significant difference between the participants who
received additional information and those who did not, regarding
the dependent variables PQ of the UX (p>.05, F=.64), HQ of the UX
(p>.05, F= 1.43) and all facets of the system acceptance (effort:
p>.05, F= .01; attitude: p>.05, F=.10; anxiety: p>.05, F= .05;
intention to use: p>.05, F= .27; safety: p>.05, F= .01). Only in the
case of the subjective feeling of control a significant increase for
the participants who received additional information compared to
those who did not could be shown (p<.05, F= 3.51). The hypotheses
H2a-H2c can therefore be only partially confirmed regarding the
effect of the subjective level of transparency.

Moreover, the need for additional information when confronted
with a system failure was examined. It could be shown that
participants do request additional information more often when
faced with a system failure compared to normal system behaviour
(p<.05, t= -1.87). Hypothesis H3a could therefore be confirmed.
Furthermore, a mitigating effect of additional information upon
request on the negative effects of system failures on UX and
acceptance was expected. The results of the ANOVA, however, did
not confirm an interaction effect of additional information on PQ
of the UX (p>.05, F= .90), HQ of the UX (p>.05, F= .43). Thus,
hypothesis H3b was rejected.

4.3 Qualitative Results
The online study contained an optional field for concluding
feedback comments from participants. 34 participants provided
additional comments. Together with the 8 on-site participants, we
conducted a two-annotator-based categorisation in the context of
our hypotheses. Table 5 shows an overview of their collectively
expressed comments. Several comments addressed transparency of
the system, e.g., "I regarded transparency and communication of the
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Table 5: Numbers of on-site and online participants expressing their opinions on the summarised category statements.

Statement category # On-site # Online
Transparency of the system was recognised by participants. 6 3
Transparency of the system was unnecessary. - 2
Transparency of the system was not enough. - 3
Participants would have preferred to take over the driving task. 3 3
Participants doubt that the system would be accepted by customers. 1 6
Participants are satisfied with the driving style. 4 -

system as being convincing overall." (online participant), "I miss an
exact visualisation of the vehicle’s internal representation of what it
recognises." (online participant), "Alright, the pedestrian was
recognised but does not cross the street. [The vehicle] can continue
driving." (on-site participant). Some comments also addressed a
preference to take over the driving task, e.g., "I would take over in
this situation, as the vehicle breaks unnecessarily." (on-site
participant), "I do not think I would be interested in asking for more
information. If I could not understand the vehicle manoeuvring, I
would take over." (online participant).

As on-site participants were asked to express their opinion
verbally, more feedback was collected from those participants.
Specific comments about transparency and user acceptance were
less directly expressed. Overall, a slightly positive trend towards
the recognised transparency of the system can be seen in both
experiments, more often, however, for the on-site experiment. And
clearly, only on-site participants expressed their opinion on the
actual driving style (e.g., they were satisfied that the turn light was
used). This qualitative feedback by participants is far from an
exhaustive interpretation and analysis, yet the overview indicates
that users tend to experience the system as being transparent.

5 DISCUSSION
Our experiment shows that passengers of an SAE level 5 AV would
prefer to take over the driving task in some situations, particularly
in failure situations, and their need to take over control is
expressed. To foster autonomous driving, this need for control can
be mitigated by a design with additional explanatory information
to increase transparency. We demonstrated this in a prior study
using live as well as additional retrospective information about the
AV’s actions, which significantly increased the perceived feeling of
control for passengers even though they were not able to take over
the driving task [Schneider et al. 2021b]. This current study further
supports this effect, showing that transparency increases the
perceived feeling of control, which increases both facets
(pragmatic and hedonic) of the UX.

The option to request even more system information in failure
situations, however, did neither mitigate the need to take over
control nor increase the transparency or UX. This outcome could
be caused by the requested information only pointing out a failure
situation in even more detail.

Regarding the feeling of control, 6 testers (4 on-site) expressed
that they would have liked to take over control in one or more of
the failure situations ("I would definitely intervene here [traffic jam
fail] now. Or at least say that it [the AV] can move on.", "Now, I would

intervene and continue driving. Because the person does not walk onto
the crosswalk.").

Statements of the participants further confirmed the usefulness
of transparency. 9 participants (7 on-site) positively commented on
the transparency of the system ("It was good that it [the
conversational user interface] informed me in this situation."). 3
online participants wished for more transparency ("The vehicle
would provide more transparency if the navigation, i.e., map and
route, were displayed while driving.") and 2 said that the
transparency was too much and/or unnecessary ("I miss the option:
Interaction is unnecessary. [...] I would be grateful if the vehicle did
not interact with me [...]").

The lack of positive effects from additional explanatory
information by the system in failure cases was also shown in a
study with factual and counterfactual explanations [Riveiro and
Thill 2021], where no significant increase in user acceptance, trust,
or understanding was found for counterfactual explanations of
classification failures by a text classification application. We
interpret those results in a similar way to our findings that failure
situations fall short on positive UX because the explanations
actually point out incorrect system behaviour. This was also
confirmed by 6 participants (3 on-site) who criticised the three
failure situations of the AV ("That was a somehow bad estimation,
as the car is parked.", "It would definitely upset me over time if
something like this happens more often.").

Although participants experienced failure situations, no
significant difference between their attitudes towards autonomous
driving was recognisable before and after the experiment – neither
for the group with nor for the group without the option to request
more information. There might be several reasons for this: Firstly,
our study was predominately conducted online with videos and no
real-world experience. Secondly, it was a one-time experience, and
a long-term exposure might change their opinion. Thirdly, it might
be caused by our study population being generally more positive
towards autonomous driving. 4 participants (3 on-site) showed
tolerance towards failures ("That’s not a stop sign (laughs).", "That
[traffic jam fail] is, of course, impractical if something like that is not
recognised. But it was solved relatively quickly.").

Furthermore, participants increasingly requested more
information in failure situations. This implies that they did not
understand the AV’s behaviour in these situations or that they
recognised the failure. In turn, a user request for more information
may indicate that the AV is acting incorrectly. 3 testers (1 on-site)
wished for a way to interact with the AV or to give feedback ("I
would like to have the opportunity to rate the autonomous driving
system.", "In the situation with the pedestrian near the crosswalk, I
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would have preferred to have a button to continue – not interfere
directly with the control, but to give my recommendation."). From a
general design point of view, if an AV did provide the option for
additional information upon request, it would be likely that an
increase in requests in certain situations point out failure
situations.

6 LIMITATIONS
One limitation of our study is that we performed most of the
experiments online due to the pandemic situation. Our interactive
driving videos thus lack the physical feeling of an actual driving
situation. However, correlations of participant behaviour in
driving simulator studies have been shown to be applicable to
real-world behaviour [Mullen et al. 2011], in particular for
non-critical situations.

The on-site study, with its focus on qualitative feedback, was
carried out as an adapted Wizard of Oz study design. Participants
were informed that they are driven by a human driver, even if they
cannot see them. Their verbal expressions, however, do not indicate
that this affected their experience of an AV simulation and the
conversational user interface. Users expressed their impression of
the system and the interface, not the real driver.

Regarding the participant population, demographic limitations
are evident. More than half of the participants were university
students. The average age of participants represents a younger
population. A broader range of participants would have been
preferred, especially elderly passengers. This would have allowed
us to generalise our research findings more broadly.

7 CONTRIBUTION & CONCLUSION
The design of transparent communication in autonomous driving
faces a challenge in case of AV failure situations. While the design
of semi-automated driving, as well as the external communication
with pedestrians, has to address the challenges of over-trust
[Fridman 2018; M. Faas et al. 2021], the design of internal
communication in SAE level 5 autonomous driving has to address
the perceived feeling of control and safety, understanding and
overall acceptance of the passengers. And while we have formerly
shown that in regular situations, internal transparent
communication increases the factors mentioned above, as well as
the UX [Schneider et al. 2021b], different factors arise with failure
situations. Communicating system limitations might not be a
solution if passengers do not have the possibility to take over
control in SAE level 5 autonomous driving scenarios. Since the
system is not aware that it is making a mistake, providing more
incorrect information does not support the passengers. In contrast,
it has a negative effect on the UX. It is a fine line between gaining
and losing the passengers’ acceptance.

Thus, regarding the system design of an AV, this creates an
information dilemma. Transparent communication contributes to
positive UX and user acceptance but is not helpful if it reveals the
limitations of the system by explaining behaviour that is
unintended or unexpected from the passenger’s point of view. As
the system does not have any information about its failure, a
feedback loop between the human and the AV could be used to
mitigate the possible negative effects of said limitations. This

might be especially true when one considers the way transparency
works in the context of UX. Since it could be shown that the effect
of transparency on UX is fully mediated by the subjective feeling
of control, enabling a feedback loop to actively involve the human
seems beneficial. For instance, an increase in requests for more
information can be seen as an indication of a failure situation or at
least a situation in which the system behaviour is seen as
unintended or not understood by the passenger. Therefore, an
increase in requests can be used as an indicator for designing an
interface that preventatively provides additional information to
the passengers.

Another idea could be to allow the passenger to give feedback
to the system that an explanation was not helpful or that its
behaviour was not understood, not correct or not as expected.
Such a human-in-the-loop design [5000.59 1998] could help
mitigate failure situations as well as address system design
limitations. Alternatively, users could be offered the possibility to
contact a human operator for teleoperation [Kettwich et al. 2021],
specifically regarding failure situations.

To conclude, we contribute the following insights and design
suggestions:

1) In regular driving situations, internal transparent
communication contributes to positive UX and user
acceptance. It has its limits in failure situations.

2) The effect of transparency on the UX is fully mediated by
the subjective feeling of control.

3) SAE level 5 autonomous driving could use a human-in-the-
loop concept for passengers to mitigate potential UX, control
and safety issues.

4) The request for more information is an indication that
something feels wrong or unexpected to the passenger.

5) The human-in-the-loop design can thus be designed
proactively based on the number of user requests.

6) Based on the number of user requests, offering to contact a
human operator for teleoperation could be considered for
failure situations.

We support further research regarding the area of failure
communication in SAE level 5 autonomous driving and its
implication on the passengers’ perceived feeling of control and
safety towards the system and their UX.
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A PROTOTYPE MATERIAL
Screenshots of online-questionnaire videos referencing to the situation numbers of Table 1.

(a) Driving view. (b) Image shown when more information is requested.

Figure 6: Screenshot of the online-experiment for situation 1.

(a) Driving view. (b) Image shown when more information is requested.

Figure 7: Screenshot of the online-experiment for situation 2.

(a) Driving view. (b) Image shown when more information is requested.

Figure 8: Screenshot of the online-experiment for situation 3.
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(a) Driving view. (b) Image shown when more information is requested.

Figure 9: Screenshot of the online-experiment for situation 4.

(a) Driving view. (b) Image shown when more information is requested.

Figure 10: Screenshot of the online-experiment for situation 5.

(a) Driving view. (b) Image shown when more information is requested.

Figure 11: Screenshot of the online-experiment for situation 6.
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