
Software Design and Development of an Appointment

Booking System: A Design Study

Kamarin Merritt1 and Shichao Zhao2[0000-0002-7048-8860]

1 Northumbria University, Newcastle-Upon-Tyne NE1 8ST, UK
2 Glasgow School of Art, Glasgow G3 6RN, UK

s.zhao@gsa.ac.uk

Abstract. This paper outlines, utilises and reflects upon effective software design

and development through effectively applying current practical solutions such as

use case modelling, class and sequence diagrams and by developing a prototype

program which reflects the designs from said diagrams. A discussion is presented

regarding the best method of approaching the Software Development Life Cycle

(SDLC), justifying the selection and also concluding with a reflection on the

professional, ethical and security issues in relation to the proposed design and use

of software within the healthcare sector. In regards to ethical considerations, the

Code of Ethics was discussed in relation to the design and development of the

system and the importance of it alongside ensuring a high level of ethics and

professionalism is of utmost priority when handling personal identifiable

information in the development of a system. As well as this, security issues

during and post development is an area of significant importance when it comes

to data management, this has been discussed in general and against the software

development life cycle. Additionally, in the design and development of software

it is crucial to abide by world software quality standards such as International

Organisation for Standardisation (ISO), and this paper reflects upon current

issues and how to address these in the process of design and development.

Keywords: Systematic Design; Digital Information Management System;

Design Reflection.

1 Introduction

The purpose of this paper is to design and develop a program prototype solution for a

case study, which will see the development of a hospital appointment booking system

and develop a critical discussion on the current issues. This paper will demonstrate a

Use Case Diagram which will model the functional requirements from the case study

and document one primary use case. Secondly, a Class Diagram will be produced to

model the systems structure, displaying various classes and their variables/attributes,

relationships and procedures. Thirdly, a Sequence Diagram will be produced,

illustrating an overview of the functional requirements for one of the primary use cases,

and this will be concluded with a prototype program, showing a proposed solution using

OOP language (object-oriented programming).

2

Furthermore, this paper will go in depth and critically discuss the Software

Development Life Cycle (SDLC) methodology adopted in the solution development

and critically reflect upon the professional, legal, social, security and ethical issues

related to the design and development of the solution developed for the case study.

This case study is based around a hospital, who has built a new central dental unit

and they now want to create a digital information management system to replace the

outdated one. This will fulfil the purpose of recording, searching, updating and storing

patient data. It is expected that all staff will use this system in order to support day-to-

day tasks such as booking, deleting, updating, managing and recording appointments,

while also allowing for the system to be utilised for other business needs. The system

needs to ensure efficiency and ease of use, through two functions (booking online or

via call). Additionally, the system will need to accommodate many functions.

2 Related Work

Typically, a use case is used to capture the requirements of a system and what the

system is supposed to do [1]. When building this system, the first step we take in the

Object-Oriented Modelling (OOM) approach is to build a Use Case Diagram. This

stage is crucial as starting with a ‘use case subject’ allows for key functional

requirements, such as logging in and out, to be defined and outlined [2]. One of the

many benefits of using models to document functional requirements, is that it enables

you, as the system analyst, to define clearly the details of the needs and requirements

of the stakeholders, thus allowing for ease when explaining to stakeholders a system

solution or proposal [3, 4]. The overall purpose of a use case diagram is to identify the

Functional Requirements. Requirements identify a list of characteristics that a system

must have and also describe what a system should do; in software engineering, there

are two types of requirements, which are; Functional Requirements and Non-Functional

Requirements [4]. Functional requirements identify potential ‘features’ in which the

given system may have [4]. Therefore, a list has been generated, of the functional

requirements which derive from, the case study: Login; Logout; Handle Login Errors;

Check Account Balance; Book Appointment; Cancel Appointment; Check in Patient;

Review Treatment History; Amend Appointment; Available Tools and Equipment;

Transport History. The above Functional Requirements extend further in the Use Case

and are discussed in the further section.

In all use cases there is a person who will use the system, this person is known as an

‘actor’ [3]. This actor specifies a role which is performed by the user. An actor models

an entity which is outside of the system, and it is crucial to identify who these actors

are as they play a role in interacting with the system, to make it work [3]. In the case

study, there are various actors who fall under different categories, due to their

relationship with the system. To define these actors, it is suggested that we need to ask

ourselves as a systems analyst, the following: Who will supply, use or remove any

information? Who will use the function (i.e., who will login, logout, etc.)? Who will

support and maintain the system? What do the systems need to interact with? What

does the actor need to do exactly? [2]. By following this criteria, the actors within the

3

specific case study, and those who will interact with the use case, are: User; Patient;

Staff; Doctor; Receptionist; Admin; Practice Manager; Driver. It was stated that there

are two types of actors: Primary Actors and Supporting Actors [5]. All of the actors

within this overall use case subject, are Primary Actors, as they are all a stakeholder

who calls upon the system, to deliver one of its services. In the section below, actors

are discussed in more detail regarding relationships with other actors and classes.

3 Design Process

This section will go in more depth when it comes the use case and relationships each

actor and the use cases have, while also applying and documenting them via diagrams.

The overall purpose of the design process is to show how each element of the process

is mapped out in accordance with the earlier use case requirements. Relationships,

Inheritance, Use Cases and Class Diagrams were developed in StarUML and this was

then followed by a prototype solution being written in code and developed in NetBeans.

StarUML is a Unified Modelling Language (UML) software tool which allows for agile

and short prototyping, which is usually targeted to be used by small, yet agile teams.

Additionally, NetBeans is the tool which allows for the StarUML prototypes to come

to life through, as it is an open source, integrated development environment that is

meant for the development of applications on various operating systems. Below, each

stage has been discussed in depth and processes have been applied in depth also.

3.1 Relationships in the Use Case (Design Decisions)

There are various types of relationships when developing a use case, and these can be

between actors and the use cases themselves [4]. Below, is a breakdown of the

relationships which have been utilised in the Use Case shown in Figure A1.

Actor Inheritance. It is highly common for all systems to have a generic User, in

which other actors inherit attributes from [4]. The purpose of having a generic user is

so that within diagrams such as the Class Diagram, classes can be illustrated simply,

rather than doubling up information in a class, we can use a generalisation relationship;

also known as a parent-child relationship [1]. In Figure 1, there is an outline of the

relationship between each actor, the clear headed arrow indicates a generalisation

relationship.

4

Fig. 1. Actor Relationships in the case study.

Use Case Relationships. Within the Use Case diagram, various use cases have a

relationship between them, which allows for the functionality of the system to be

demonstrated clearly, for stakeholders to grasp with ease [5]. The most common

relationship between use cases is the directed relationship, more specifically ‘extend’

and ‘include’ as shown in Figure 2. In Figure 2, we can see the use case ‘Book

Appointment’, for example. Now in the new system being developed, patients will be

able to book an appointment through two different methods, either via calling in; or

booking online, the purpose of <<extend>> is to allow users within the system, a

choice. However, if the patient is not registered, their path in the process would be

different than that of an existing patient. Therefore, in order to enable this option, we

would have ‘Book Appointment’ as a main use case and then we use the directed

relationship (<<extend>>) to get to the ‘Register Patient’ stage in the system, which

would allow us to add the patient to our system after taking relevant details, then they

can follow the path of an ordinary patient by choosing their preferred booking method.

As we can also see in Figure 2, there is an <<include>> relationship, now this is a

required function that needs to be undertaken, unlike the <<extend>> relationship and

a user in the system cannot proceed to the next stage or use case, without undertaking

this function. This has been explained more clearly, in the section below which

demonstrates the ‘Book Appointment’ use case in more detail.

5

Fig. 2. Screenshot from the system Use Case Diagram.

Documentation of a Use Case using House Style. In order to demonstrate various

elements of a use case within the Use Case subject, the ‘Book Appointment’ use case

has been documented through using the House Style technique (as shown in Table 1).

The purpose of documenting this particular use case is due to the fact that it is one of

the key use cases within the system, also the purpose of this is to illustrate further details

that may not be visible in the use case diagram.

Table 1. Documentation and structure of the ‘Book Appointment’ use case diagram.

Name: Book Appointment

Description:

Patient wants to book an appointment, which can be done via calling in or booking

online. Admin will determine date and time, upon which a deposit will be taken, and

confirmation notification will be sent to the patient.

Actors:

• Patient

• Administrator

• Receptionist (in the case of Cancelling appointment or no show)

Pre-Conditions:

• Be a registered patient

• Patient credentials have been validated (booking via call and online)

• Patient needs to book an appointment

Basic Flows:

• Use case begins when Actor contacts to book appointment

o << extend >> Book via call

o << extend >> Book online

• Authenticate patient

• Determine appointment date and time

• Deposit payment

• Appointment confirmation notification

6

Post Conditions:

• Patient successfully books appointment slot

• Administrator saves record of appointment and updates patient record

• Patient receives appointment confirmation notification

Alternative Flows:

• If patient is not registered, admin team will have to register patient before booking

appointment

• If patient authentication is failed, terminate call (via call) or display error message

and return user to home screen (via online)

• Call lines full – patient will need to hold the line and wait (via call)

Notes: --

Business Rules

• Patient must be registered before booking an appointment

• Patient must verify details

• Patient must have required amount of credit within their account to pay deposit

(usually a notification is sent to the patient if balance is low

3.2 Class Diagram (use STARUML)

The class diagram which illustrates the system is extremely complex and has many

classes within. Therefore, no design pattern has been adopted, as it would cause

confusion within the system. Using design patterns in UML may cause for confusion

or lack of function [4, 6]. In the class diagram, there are various main classes, the most

important one being the ‘Appointment’ class. The reason for this being the main class

is that it is connected to most actors and requires an interaction from various aspects of

the system such as payment, notifications, and actors such as doctors and admin. This

class has various associations with other classes, as shown in the snippet in Figure 3 on

the left side and full diagram in Appendix 2, the main type of relationship is

composition. The composition relationship is similar to a parent and child [2]. The child

cannot exist without the parent, just like a room cannot exist without a house [2, 4].

Therefore, by connecting other classes with the composition tool, this shows that for

example, a ‘Confirmation Notification’ cannot exist without booking an appointment.

Furthermore, multiplicity notations have also been utilised, the purpose of this is to

indicate the number of instances of one class linked to one instance of another class [4].

For example, as seen in Figure 3 on the right side, one appointment will have one

payment, but one payment can only be made from booking one appointment, thus the

reason for the ‘1’ notation at either end of the composition relationship. It has been

highlighted that in a class diagram, ‘multiplicity’ is when the association between

classes is being depicted [4]. For example between ‘Account’ and ‘Patient’, there can

be one to many (1..*) patients, but only one (1) account per patient. Therefore, along

the association relationship line as shown in Figure 3 on the right side, we can see this

illustrated. The diagram is not limited to the above specific relationships and

multiplicities, and many others have been used and can be seen in the full diagram

outlined in Appendix 2.

7

Fig. 3. Screenshot from the Class Diagram, full diagram can be found in Appendix 2.

3.3 Sequence Diagram (use STARUML)

In order to further demonstrate the Use Case documented earlier using the House Style

documentation method, a sequence diagram demonstrating this Use Case ‘Book

Appointment’ and the basic flows of it, has been developed in StarUML and is

illustrated in Appendix 3. A Sequence Diagram is a UML diagram which demonstrates

how the system or the classes within a code interact with one another [1]. The new

system requires a core function which is to book appointments for patients, and the

sequence diagram demonstrates this through mapping out a sequence of interactions to

perform this function.

This sequence diagram demonstrates the steps of the system when booking an

appointment over the phone and online, however, the diagram firstly outlines a Login

sequence which is paramount for when the user, in this case the Admin and the Patient,

want to access the online system and when the Admin wants to use the system to record

an appointment (see Figure 4). Thus, the two main sequences are Login and Book

Appointment, as booking an appointment could not happen without the Admin logging

into the system. The main sequence in this diagram, however, is the appointment

booking sequence which is shown in Figure 5. In this sequence there are lifelines which

are vertical dashed lines, in which various objects (i.e., Booking History; Patient

8

Records; Account) and Actors (i.e. Patient; Admin) connected by various different

interactions, are placed. This helps show the process overtime, moving down the

lifeline means that more time is passing [4]. A ‘Message’ connects lifelines together

and represents an interaction, for example veryDetails (dob, name).

Fig. 4. The login sequence extracted from Sequence Diagram; full diagram shown in Appendix

3.

In the Appointment Booking sequence diagram, the first step (after successfully

logging in) is to book an appointment. In Figure 5 we can see the first interaction is

‘bookAppointment’ illustrated by a straight line with a filled in arrowhead, this inter-

action is known as a message and is sent from one actor to another to start the process.

Below this is a further interaction, known as a reply and is represented by a dashed line.

The first sequence is broken down into two stages, as it is only possible to book an

appointment if the patient is already registered, if they are not registered, they will not

be able to book an appointment and follow the normal sequence of the diagram which

includes steps interactions 11-16. Therefore, an ‘alternative’ frame is used. This

symbolises a choice between two message sequences, which are usually mutually

exclusive, and this has been placed around interactions 11-19. The conditions are if the

patient is registered or if they are not. A dashed line separates the two choices, the

option above is called ‘patientExists’ and will proceed to the following sequence of

booking appointment, however the below option is called ‘patientNonExistent’ and will

extend the sequence to an alternative path to register them. The two main interactions

used in the sequence diagram are message and reply message, with the design decision

9

to use various alternative frames to navigate through different areas of the system, when

a function cannot be performed.

Fig. 5. The login sequence extracted from Sequence Diagram, full diagram shown in Appendix

3.

3.4 Program Prototype

As this prototype will become extremely long due to the nature of the system, there has

been a focus on the main class of ‘Login’ and ‘Book Appointment’. The system

prototype reflects how a patient would log into the system and book an appointment via

the online method, outlined originally in the Use Case Diagram and Sequence Diagram.

The first JFrame (a JFrame is a container which provides a window, in which other

components such as menu, buttons, text fields etc rely on) is built around the ‘Login’

class. In the class diagram, the User was a generic actor and would hold the operation

of being able to login to the system, upon verification of their details. In the prototype

developed in NetBeans, upon inserting Graphical User Interface (GUI) components

(i.e., Buttons, Text field etc), raw code and strings were connected to them (see Figure

6) to allow for specific credentials to be used in order for access, and if not, the user

would be presented with a ‘Login Failed’. This was possible due to using the code

‘String name/pwd =’ and setting and ‘if’ code to verify what name and password equal.

If the login is successful, the user will be presented with a ‘Login Successful’ alert on

the login page and an additional JOptionPane will pop up, allowing the user to progress

to the next screen, this can be seen in the code too (see Figure 6 & 7). In order to connect

10

the login page JFrame to the next page, known as ‘patientAccount’, a connection had

to be made. This was implemented by setting up the GUI button to register an event,

creating a ‘java.awt.event.MouseEvent evt’ private void. In this event we had to add

code to make the connection work, and this can be seen within the code. To make the

transition more fluid, the use of ‘this.dispose’ was used, so that the previous window

would close, and the user wasn’t left with multiple open windows – this helps fluidity

when it comes to progressing through an application so multiple windows are not left

open. The use of ‘this.dispose’ is beneficial as it free’s up allocated memory or releases

unmanaged resources.

Fig. 6. Login Code, containing ELSE variants for login failure.

Fig. 7. Login JFrame in demonstration showing two results (Login.java).

Once at the next window known as ‘patientAccount’, the user is presented with

options, all of which were set out the attributes/functions, both in the use case and class

diagram. This JFrame included a link to the main class, ‘Book Appointment’ and to

progress to this stage the user must simply click the Button GUI ‘Appointment

Management’. Again, similarly to above and the Login button, code was used to allow

for the current JFrame to transition to the next (see Figure 8).

11

Fig. 8. Appointment Management JFrame, developed in NetBeans.

In this JFrame, the user is presented with three options. Due to the complexity of

building three different JFrames and code, only ‘Book Appointment’ button will take

you to a working JFrame, the other two options take you to a new, but blank JFrame.

This is simply just a navigation page, and uses minimal coding to progress, the coding

for this was already demonstrated earlier. Upon clicking the ‘Book Appointment’

button the user is provided with the final window of the system, which is

‘bookAppointment’ and they are presented with appointment slots which were

connected in one Panel using various Check Box swing controls and then inserted into

the swing control, List. Once the user has selected an appointment time, they are then

able to press ‘Book appointment’. After clicking this button, a JOptionPane will pop up

confirming the booking (see Figure 9) and by clicking OK, this will end the process

from the patient’s side, and Admin will continue to finish the process of updating

patient records/assigning doctor.

12

Fig. 9. Book appointment JFrame, also showing JOptionPane, developed in NetBeans.

4 Discussion

This section is going to critically discuss the Software Development Life Cycle (SDLC)

methodology adopted in the above solution development and critically reflect upon the

professional, legal, social, security and ethical issues related to the design and

development of the above solution.

4.1 Critical Discussions: Software Development Life Cycle (SDLC)

The Software Development Life Cycle is a phased methodology which produces

software to a high standard with low cost and the shortest possible time frame [1]. De-

pending on the chosen model, the SDLC provides a structured order of phases which

enable an organisation to efficiently produce robust software that is both well tested

and ready for use [4]. These phases for example, could be: 1. Planning; 2. Analysis; 3.

Design; 4. Implementation; 5. Testing; and 6. Deployment and Testing [7].

There are a plethora of SDLC models, the most popular models are Waterfall

Methodology and the Agile Methodology [1]. These are used massively, in order to

produce an efficient and effective robust program solution. Thus, it was paramount that

the correct SDLC was adopted prior to starting the process [4]. If the correct

methodology is not used, this can cause the solution to become problematic within the

process and cause design flaws, lack of security and disrupt the functionality [8].

The Agile methodology consists of 6 stages, as shown in Figure 10 and is an iterative

and incremental based development, as it allows for requirements to be changeable

according to needs [9]. Generally, the common issue in systems development is that

there are constant requirement changes or even changes in the technology itself,

however, Agile is a software development methodology which was intended to

overcome this particular issue, therefore not managed correctly, the project may lose

track and the process may be disrupted [10].

13

Fig. 10. Agile Methodology phases, adapted from Kendall and Kendall [1].

This presenting a limitation of using the Agile method, is that the project may lose

track if not managed properly and the functions are not outlined correctly [11], whereas

Waterfall methodology is an easier method to manage. Due to its nature, each phase

has specific deliverables and a review process [4]. With Waterfall (as shown in Figure

12), it can be highlighted that its approach values planning ahead, keeping direction

straight and accurate, however, if the requirement is not clear at the beginning, the

method can become less effective, which will have a major impact on cost and

implementation [12]. This presenting the major different between Agile, the fact that

Waterfall approach values planning ahead but can meet more obstacles throughout the

process, while Agile values adaptability and involvement and is able to change during

the process [4, 11].

Fig. 12. Waterfall Methodology, adapted from Sommerville [4].

Furthermore, Waterfall has less stakeholder involvement which causes a hands-off

approach. This approach is not suitable for every product, and the majority of

users/stakeholders need to be involved in the system for example, to meet the correct

requirements [12]. However, Agile focuses on delivering a high quality and user-

friendly product through incorporating stakeholder engagement into all stages which

allows for a more structured list of requirements [1]. Thus, Agile is more suitable in the

14

development of this system as the methodology has two core elements: Teamwork and

Time – and breaks the overall project into smaller pieces with an individual time scale

and ‘sprints’ [13]. Using such a method allows for feedback from previous phases to

be planned into the next, so if a requirement is missing, or feedback has been given,

this can be used, whereas in Waterfall, what is developed is based on the feedback and

plans given in the first place [1].

4.2 Agile Methodology within the Program Solution

As discussed above, Agile is one of the most robust and beneficial methodologies to

use in during the SDLC. The main benefit for using this methodology in the

development of the program solution is that feedback can be given per stage and

requirements can change along with way. The key instrument for Agile development is

iterations, and this process sets out actions which are repeated until a condition is met

[4]. One of the most productive Agile development tools is Scrum. Scrum uses ‘Sprints’

which allow for the development team to achieve and complete certain parts of the

systems functionality. Therefore, as the program solution was only developed up to the

stage allowing for the patient to book an appointment, this allowed for this portion of

the solution to be robust (as shown in Table 2).

Table 2. Documentation and structure of the ‘Book Appointment’ use case diagram.

Agile Software Development Life Cycle Phases

1. Plan When developing the system, a use case diagram was developed,

deriving from the requirements outlined in the case study. This

allowed for the outlining of functional requirements which would be

required in the system. After this, a Class Diagram was outlined

showing various relationships between classes and also outlining

various attributes and functions specifically, for each class. Thus, a

Sequence Diagram was developed, and the Design Phase could take

place.

It has been noted by many that if developers decide to ignore this stage,

the system will be prone to ‘feature creep’. This is where non crucial

features keep arising and having to be implemented along the way,

which while scrum is a good method to implement these along the line,

it can cause for the projects more important tasks to lack time [1,13]

15

2. Design There is usually two approaches in designing the solution: 1) looking

at the visual design i.e. JFrames, and; 2) looking at the architectural

structure of the solution, i.e. the source code.

In the design phase the coding was implemented in the Phase 3, but

here, the basic JFrames were developed in NetBeans, as outlined

earlier in Figure 7 and 8. In these JFrames, various GUI components

were inserted per guidance of the previously developed diagrams.

From making these GUI components in regards to the requirements,

the system started to take place, however could not take place without

building in code.

3. Develop

(Coding stage)
Now all GUI components were built into the JFrames, the

functionality needed to be coded into the source code, in NetBeans.

4. Testing Unlike in the traditional SDLC approach where development and

testing are individual phases, Agile connects these two phases

together, allows for the testing and development team to work together

as one and reduces overall costs and defects which may incur later [1].

NetBeans allows a program to be run, thus the ability to test if coding

works and the GUI components work when used and the JFrames

connect to each other, as supposed to. Agile Testing stage is to draw

out any defects and fix them as soon as possible prior to releasing [4].

In the developing phase, coding appeared difficult when trying to build

the various different JFrames for different users, therefore, only the

Patient (Actor) portion was built. This is usually the longest process

as it is writing advanced functionality of the system and allowing it to

work. However, in the developing phase, there usually isn't many

changes to the iterations here, this is in Phase 4: Testing.

During Phase 4, further iterations become apparent as the factors such

as integration, operability and user testing take place.

5. Releasing As in the above phases, only the patient portion of the booking system

was built. This allows for the system to be released to users initially,

in order to gain any potential feedback on whether the user interface

is unappealing, hard to navigate and whether there are any additional

requirements that could be built into the system when the sprint for the

next round starts again. From this, iterations are updated in the existing

software, which introduces additional features and resolves any issues

[4].

16

6. Feedback Upon completing all of the previous development phases, the whole

system can be reviewed. When finishing the solution in NetBeans, it

was apparent that the coding and the JFrames held some functions that

were not outlined in any of the Use Case, Class or Sequence Diagrams.

Therefore, these were able to be updated accurately and made sense

when looking at the diagrams and prototype in comparison to each

other.

After this final phase, the Agile software development life cycle could

begin again in order to extend the current booking system to other

actors such as Admin, Doctors and so on.

4.3 A Critical Reflection: Professional, Security and Ethical Issues

When it comes to the design and development of a system which involves a user

interface and requires interaction, especially of that in the healthcare sector, there are a

plethora of professional, security and ethical issues which may arise [4]. Within the

development of the system, it was paramount that these issues were considered.

Ethical Issues. The term ethics refers simply to the governing, conduct and principles

of people’s behaviours [4]. In software development, ethical issues are massive and can

be very complicated, this is due to the rise of new technologies such as machine

learning, AI and Big Data. Some of these issues include privacy, transparency,

accountability and diversity. However, in order to overcome these issues, it is

imperative that organisations who develop and design their own software, have a Code

of Ethics. Specifically, personally identifiable data in healthcare has been an arising

issue in the past few years and following the Code of Ethics will allow for employees

to understand and be trained on a set of acceptable behaviours in order to remain ethical

and professional, when handling personal identifiable information, and organisational

data in general [14], in software development, ethics is taking into consideration all of

the implications which we may create as a result of software algorithms. As an

organisation, it is imperative that standards are not violated and that as a software

developer, systems analyst or even just an employee ethics and also morals are used

interchangeably [14].

Security Issues. In the software development process, security is a constant process

that involves all employees and practices within an organisation [15]. As technology

advances, software environments are becoming more dynamic and complex, causing

the development of systems to become more challenging. Also, with the increasing

growth of the software development life cycle, the engineering behind it is under huge

pressure to deliver requirements fast [15]. This causes less attention to be focused on

security issues in which may arise in the system or software.

Many software applications are outsourced, and the development lacks in

incorporating software security and due to this, issues arise around the growth of an

17

organisation and availability of meeting requirements for its customers [16]. Overall,

from the be-ginning, organisations should ensure that during the software development

life cycle, security is tightly bound from the get-go. The TCSEC Glossary (Trusted

Computer Systems Evaluation Criteria) defines security requirements as a set of laws

and practices which govern how an organisation protects, distributes and manages any

form of sensitive information [17]. It also states that security requirements should be

measured during the SDLC, and can be classified into functional security requirements,

non-functional security requirements and derived security requirements [18]. Thus,

during the SDLC, software developers must review these specific requirements

outlined in the glossary, in order to reduce vulnerabilities down the line once the system

is deployed.

Professional Issues. In the design and development of software, it is crucial to abide

by the world software quality standards, in which there are various professional issues

that may arise, the majority of these relate to the factors which are outlined in the

ISO9126, such as: Functionality; Reliability; Usability; Efficiency; Maintainability;

Portability [19]. When developing software in an organisational context, it is crucial to

take into consideration the user and their experience. Firstly, user experience (i.e.,

Functionality; Usability; Efficiency) is crucial in gaining feedback on the systems from

a user perspective [20, 21]. For example, this allows developers to reflect upon system

feedback and incorporate new iterations in the program to make it more usable,

functional and efficient for the user – thus, professional issues generally arise in the

Testing stage of the software development life cycle, particularly in the Agile

methodology [1]. Furthermore, when taking into consideration a patient booking

appointment system, the system should cater for all users. Thus, factors such as

disabilities, visual or hearing impairments and also those who may be illiterate are a

key focus when developing and designing a system; allowing for everyone to book an

appointment successfully. This would also include developing the system to not solely

be based on JAVA and developing it for various platforms which would allow it to

reach as many users as possible.

5 Conclusion

To conclude, this paper has developed from start to finish a program solution prototype

for the case study. This has included outlining the functional requirements of the

system, down to coding and creating the system itself in NetBeans. Upon doing this,

the SDLC was reflected upon and how, as a systems analyst we were able to approach

it. Furthermore, it was apparent that due to the vast amount of Ethical, Security and

Professional issues in the software engineering domain and generally in organisations,

that there are many principles and legislations that need to be followed in order to

overcome these.

This paper enables useful insight into developing an appointment booking system

through looking into the core, and various aspects within the SDLC, choosing the

correct method of approach whether this is through the waterfall or agile methodology

18

and in general discussing the best method of approaching the SDLC, justifying it and

reflecting upon various issues that may arise. This is an important element of

contribution from this paper, as it approaches software design and development through

effectively applying it, while also justifying and reflecting upon the effectiveness of

using it within practical solutions. Additionally, this paper reflects upon current issues

(i.e., ethical, security, legal, etc.) and how these can be addressed in the process of

design and in general, development.

Appendix A

19

Appendix B

Appendix C

20

References

1. Kendall, K., Kendall, J.: Systems analysis and design. 10th edn. Pearson Education Limited,

Harlow, United Kingdom, pp. 1–576 (2019).

2. Bruegge, B., Dutoit, A.: Object-oriented software engineering using UML, patterns, and

Java. 1st edn. Harlow: Pearson Education Limited, Essex, United Kingdom, pp.11–40

(2014).

3. Satzinger, J., Jackson, R., Burd, S.: Systems analysis and design in a changing world. 1st

edn. Cengage Learning EMEA, Andover, United Kingdom, pp.171–200 (2008).

4. Sommerville, I.: Software engineering, global edition. 10th edn. NOIDA: Pearson Education

Limited, Uttar Pradesh, India, pp.119–140 (2016).

5. Cockburn, A.: Writing effective use cases. 1st edn. Writing Effective Use Cases, Addison-

Wesley, London, pp. 1–259 (2006).

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable

object-oriented software. 1st edn. Addison-Wesley, Massachusetts, United States (1994).

7. Sharma, P., Singh, D.: Comparative Study of various SDLC models on different parameters.

International Journal of Engineering Research. Comparative Study of Various SDLC

Models on Different 4(4), 188–191 (2015).

8. Aljawarneh, S., Alawneh, A., Jaradat, R.: Cloud security engineering: early stages of SDLC.

Future Generation Computer Systems 74, 385–392 (2017).

9. Andry, J.: Purchase order information system using feature driven development

methodology. International Journal of Advanced Trends in Computer Science and

Engineering 9(2), 1107–1112 (2020).

10. Rauf, A., AlGhafees, M.: Gap analysis between state of practice and state of art practices in

agile software development. In: 2015 Agile Conference (AGILE), pp. 102-106. IEEE,

National Harbor, MD, USA (2015).

11. Azman, N.: The development of IoT tele-insomnia framework to monitor sleep disorder.

International Journal of Advanced Trends in Computer Science and Engineering 8(6), 2831–

2839 (2019).

12. Schuh, G., Rebentisch, E., Riesener, M., Diels, F., Dolle, C., Eich, S.: Agile-waterfall hybrid

product development in the manufacturing industry–Introducing guidelines for

implementation of parallel use of the two models. In: 2017 IEEE International Conference

on Industrial Engineering and Engineering Management (IEEM), pp. 725–729. IEEE,

Singapore (2017).

13. Abdelghany, A., Darwish, N., Hefni, H.: An agile methodology for ontology development.

International Journal of Intelligent Engineering and Systems.12(2), 170–181 (2019).

14. Aydemir, F., Dalpiaz, F.: A roadmap for ethics–aware software engineering. In: Proceedings

of the International Workshop on Software Fairness, pp. 15–21. Association for Computing

Machinery, New York, NY, USA (2018).

15. Zarour, M., Alenezi, M., Alsarayrah, K.: Software security specifications and design. In:

Proceedings of the Evaluation and Assessment in Software Engineering, pp.451–456.

Association for Computing Machinery, New York, NY, USA (2020).

16. Aljawarneh, S., Yassein, M.: A conceptual security framework for cloud computing issues.

Cyber Security and Threats, IGI Global 12(2), 12–24 (2018).

17. TCSEC - Glossary | CSRC, https://csrc.nist.gov/glossary/term/TCSEC, last accessed

2021/01/02.

18. Sterne, D.: On the buzzword 'security policy'. In: Proceedings of IIEEE Computer Society

Symposium on Research in Security and Privacy, IEEE, pp. 219–230. Oakland, CA, USA

(1991).

21

19. ISO/IEC 9126-1:2001, https://www.iso.org/standard/22749.html, last accessed 2021/01/06.

20. Merritt, K., Zhao, S.: An investigation of what factors determine the way in which customer

satisfaction is increased through omni-channel marketing in retail. Administrative Sciences

10(4), 01–24 (2020).

21. Merritt, K., Zhao, S.: An innovative reflection based on critically applying UX design

principles. Journal of Open Innovation: Technology, Market, and Complexity. 7(2), 1–12

(2021).

	1 Introduction
	2 Related Work
	3 Design Process
	3.1 Relationships in the Use Case (Design Decisions)
	Documentation of a Use Case using House Style. In order to demonstrate various elements of a use case within the Use Case subject, the ‘Book Appointment’ use case has been documented through using the House Style technique (as shown in Table 1). The p...

	3.2 Class Diagram (use STARUML)
	3.3 Sequence Diagram (use STARUML)
	3.4 Program Prototype

	4 Discussion
	4.1 Critical Discussions: Software Development Life Cycle (SDLC)
	4.2 Agile Methodology within the Program Solution
	4.3 A Critical Reflection: Professional, Security and Ethical Issues

	5 Conclusion
	Appendix A
	Appendix B
	Appendix C
	References

