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Abstract 
Cell biology and imaging technology have vastly improved over the past decades, enabling 

scientists to dissect the inner workings of a cell. In addition to technical limits on spatial and 

temporal resolution, which obscure the picture at the molecular level, the sheer density and 

complexity of information impede clear understanding. 3D molecular visualisation has 

therefore blossomed as a way to translate molecular data in a more tangible form.  

Whilst the molecular machinery involved in cell locomotion has been extensively studied, 

existing narratives describing how cells generate the forces that drive movement remain 

unclear. Polymerisation of a protein called actin is clearly essential. The general belief in the 

cell migration field is that actin polymerisation’s main role is to push the leading edge of the 

cell forwards, while the rest of the cell follows passively. The cell migration & chemotaxis 

group at the CRUK Beatson Institute propose an alternative hypothesis, in which actin 

filaments constitute cables. Motor proteins pull on these cables, causing them to behave like 

the treads of a tank and drive cell movement.  

This article describes the development of a 3D animation that uses analogical reasoning 

to contrast the ‘tank’ hypothesis for cell locomotion with the current dogma.  

(Abstract = 200 words; Main text = 4466)  
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Introduction 
Animation as a modern-day thinking and communication tool 

Historically, 3D physical models were widely used in many scientific disciplines as 

teaching aids or ‘thinking tools’ for researchers. They demonstrate spatial relationships, 

provide a physical representation of abstract concepts or depict what cannot be seen, and are 

highly advantageous as they can be taken apart and reassembled repeatedly [1, 2].  

Traditionally, model figures depicted in scientific journals are simple concise 2D 

representations that describe a proposed hypothesis or summarise research findings. The main 

aim in creating a model figure is to communicate with clarity the key messages the author 

needs to convey to their audience. However, a 2D schematic can often fall short when 

conveying molecular/cellular interactions, localisation, and structures that are highly dynamic 

or mechanistically complex [2, 3]. Furthermore, the rich narrative in a research manuscript can 

be easily lost due to oversimplification of concepts and/or the illustration being confined to a 

single figure [4, 5]. 

Whilst physical models and 2D diagrams continue to be used widely, scientists are 

becoming more aware of using in silico visual representations of their laboratory data to 

enhance communication of their ideas and aid learning, particularly as computer graphics and 

software continue to evolve [3, 5, 6]. Embedding of 3D data viewers (for structural biology 

and microscopy) within online research articles is steadily increasing [7]. 

High quality cell and molecular biology mechanisms of action (MoA) 3D animations are 

often commissioned by pharmaceutical or healthcare establishments to promote and explain 

drug mechanisms or medical procedures that are usually tailored towards a lay audience. Whilst 

many MoA animations have a cinematic quality that is very engaging, many are not 

‘anatomically’ correct and hence this is a niche that microscopists in collaboration with 3D 

animators may be able to fill [8]. 

A greater number of scientific journals are now welcoming animations created by the 

authors to communicate their findings [5]. Animations within articles or on lab websites 

which succinctly express the research done by a particular group can markedly enhance 

engagement with the reader [4].  

Molecular visualisation advances 
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Improvements in structural biology techniques have enabled better understanding of the 

‘molecular sociology’ of cells (how proteins are spatially arranged and interact to perform 

cellular functions) [9, 10]. In addition, advances in computational power and new 

methodologies have enabled molecular dynamics simulations to be more widely used to 

examine protein mechanics of large macromolecule assemblies [11, 12].  

Confocal microscopy techniques have also undergone significant improvements in the past 

few decades, including better hardware (lasers and detectors), more sophisticated software that 

enables 3D time-lapse, faster imaging speeds, and accommodation of large datasets.  

These advances in experimental biology have warranted more sophisticated visualisation 

of findings. It has become possible to create high quality movies based on real data [5, 13]. 

Raw confocal data can be reconstructed using a number of free and commercially available 

packages such as Amira (FEI), Imaris (Bitplane) and 3D Slicer, which can subsequently be 

exported into 3D animation software such as Maya or 3ds Max (Autodesk) [8]. There are 

however limitations to using these software to extract meshes from large volumetric data sets, 

such as high noise-to-signal ratios which consequently require significant manual clean-up 

[14].  

The RCSB Protein Data Bank (PDB) (http://www.rcsb.org) is a free worldwide resource 

with numerous 3D visualisation viewers that allow scientists to access data on biological 

structures [15]. PDB IDs can be exported from this vast repository to various 3D modelling 

programs enabling users to create visualisations that are structurally correct, eliminating the 

need to model molecules from scratch.  

Commercial 3D animation software packages usually tailored towards the entertainment 

and game industries, are now becoming more widely accessible so that scientists can import 

their own data to create simulations and animations [4]. Some 3D applications have plugins 

such as ePMV [16], BioBlender [17] and Molecular Maya [18] that enable molecular meshes 

to be imported from databases that can be adjusted and animated like any other model.  

Although the availability of molecular plugins has bridged a gap between experimental 

data and visualisation, good renderers such as Vray, Arnold, and Mental Ray are necessary in 

the production process. The modelling and rendering tools in 3D animation software can be 

difficult for novices, and may continue to discourage scientists from creating their own 

visualisations [4, 5, 19].   



 5 

Art of analogy 

Animations depicting complex cell biological processes or hypotheses can often be more 

intuitive for an audience to follow than text or a 2D diagram. However, some caution must also 

be taken when creating imagery for education, outreach or peer-peer communication purposes 

[20, 21]. Balance is crucial so that the viewer can trust the accuracy of the information, but also 

not to be over- or underwhelmed by a surplus of detail or oversimplification respectively. 

Arguably, some artistic licence may be acceptable if generating interest through outreach is the 

goal, or for teaching a general view of a scientific concept [2, 22].  

When creating visualisations for communicating to scientists in the research community, 

more detail may be required, but whether that can hinder good storytelling is debatable. 

Sometimes selective exclusion of information is needed such as simplifying the true nature of 

a crowded cellular environment, modifying the timescale of processes which may in reality be 

lengthy or extremely rapid, and distortion of scale to focus on objects of interest within the 

scene [13, 21, 23, 24]. Furthermore, researchers may be concerned that a hypothetical model 

may unduly influence viewers into thinking the model is actually replicating experimental data 

or is a true reflection of reality, and therefore they must be carefully designed [2, 25].  

 

Cell locomotion 

Through advances in microscopy, biochemistry and molecular biology, the major proteins 

and signalling events involved in cell locomotion have largely been identified. However, 

elucidating precisely how these cellular components co-ordinate to work as an integrated 

system and generate the required forces for motility still remains unclear. 

A translocating cell has to exert force to overcome the friction of the substratum and the 

surrounding liquid.  To achieve this efficiently they acquire a polarised morphology (extending 

protrusions at a restricted front with concomitant retraction at the rear) [26]. The collective 

actions of two self-assembling cellular machinery that undergo cycles of growth and turnover 

- the actin cytoskeleton and cell adhesions - are crucial to power cell locomotion. Actin 

filaments and various regulatory proteins work as force generators, whilst cell adhesions 

provide a physical link between the substrate and the cytoskeleton [27]. 

Analogies to depict hypotheses of cell locomotion 
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Many studies have shown that the actin cytoskeleton is essential for lamellipodial and 

filopodial protrusion [26-28]. However, the question of whether actin polymerisation is the 

driving force for cell locomotion is still debated. Most current authors describe the primary 

role of actin polymerisation as driving the edge of the cell forwards, whilst the rest of the cell 

body follows passively [28]. 

Some key experiments that led them to this hypothesis came from research done using 

simple model systems to study actin-based cell motility involving the bacterial pathogen 

Listeria monocytogenes or biomimetic systems (synthetic spherical beads or phospholipid 

vesicles). L. monocytogenes are rod-shaped bacteria that infect mammalian eukaryotic cells,  

hijacking the host’s own actin polymerisation machinery and energy to move within the cell 

[29]. 

The propulsion of L. monocytogenes or beads due to polymerisation of actin filaments is 

also thought to be the mechanism responsible for pushing a cell’s leading edge membrane 

forward, therefore providing the force to generate locomotion. Many researchers believe the 

cell body moves as a consequence of being ‘pulled’ by the leading edge, with cell adhesions 

weakening and acto-myosin contraction at the rear [28]. An analogy is that of a two-step 

movement by a climber using their hands to grip and then subsequently shift the bulk of their 

body as they scramble up a mountain.  

Whilst there is plenty of data in the literature that has explored the assembly of the actin 

cytoskeleton and adhesions at the cell front, current explanations of their decomposition and 

recycling at the back is less clear.  

The Cell Motility and Chemotaxis lab at the CRUK Beatson Institute, and its director, 

Professor Robert Insall, believe the existing interpretation in the literature (the mountain 

climber analogy) currently cannot fully explain the force generation responsible for 

locomotion.  They present an alternative hypothesis of propulsion. Based on existing data in 

the literature and from their lab, the Insall group believe an animation can help to explain their 

alternative hypothesis, whereby the actin filaments throughout the cell provide cables for motor 

proteins (myosins) to pull on. A suitable analogy of their suggested propulsion system within 

a cell is that of tank treads, where the treads represent actin molecules.  

This paper describes the creation of a 3D animation that uses analogies to communicate the 

distinction between the existing and new hypothesis (that the mountain climber analogy 
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represents a two-phase motion, whereas the tank analogy represents one smooth continuous 

movement). The final animation was subsequently screened to an audience with a scientific 

background.  

 

 

Materials and Methods  

Materials  

The software used in the project can be found in Supplementary Figure 1A. See supplementary 

Figure 1B for references of microscope movies.  

Sound was recorded using a Scarlett 2i2 USB microphone at the Digital Design Studio 

(Glasgow School of Art).  

Methods 

Script and storyboarding 

The animation script was written in collaboration with Professor Robert Insall (CRUK Beatson 

Institute). A storyboard was drawn up and the animation split into 3 major scenes: 

Scene 1: Introduction  
- Relevance of pseudopods for cell migration  
- Introduction to actin  
- How L. monocytogenes experiments influenced the interpretation of actin’s role in 

migration 
 

Scene 2: Mountain climber analogy 
- Explanation of how actin and pseudopods drive migration according to the majority 

of researchers (split screen cross-sectional views of a cell and mountain climber) 
 

Scene 3: Tank analogy 
- Alternative hypothesis from the Insall lab, whereby actin dynamics within the cell 

mirror the movement of treads on a tank (cross-sectional views of the whole cell 
superimposed on moving tank treads) 
 

Dr Olivia Susanto (CRUK Beatson Institute) kindly provided the voice-over for the animation.  
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Creating model assets 

The cell  

The fish epidermal keratocyte was chosen as the model for the animation because it is a 

cell type widely used to study cell locomotion. The keratocyte cell was scuplted in Zbrush 

(Figure 1A).  

Actin 

Actin is a highly abundant protein found in most eukaryotic cells that is able to form 

filaments. Actin filaments (F-actin) are composed of repetitive assemblies of monomeric actin 

(G-actin) that form in a head-to-tail fashion so that they are helical and intrinsically polar [30]. 

Often when depicting mechanisms or signalling pathways in journal figures the proteins are 

represented as simplified shapes that bear little resemblance to their experimentally determined 

molecular structure. Since actin was a focal point in the animation, a suitable actin filament 

crystal structure available on the RSCB Protein Data Bank (PDB ID: 3B63) was chosen to 

maintain some basic molecular authenticity. This was imported into mMaya (Clarafi.com) so 

that the molecular mesh and ribbon structure could be modelled and animated (Figure 1B).  

There are many regulatory and accessory proteins required to initiate actin polymerisation, 

regulate filament assembly, and turnover [30]. However, this level of detail was decided to be 

superfluous for the purposes of the project.  

Mountain climber and rock face  

The SuperAverageMan ztool in Zbrush (Figure 1C) was used as the model for the mountain 

climber. The rock face upon which the figure would climb was made in Zbrush using zspheres, 

sculpted with zbrushes (Figure 1D).  

Cell adhesions 

For a cell to move it needs to transmit force (traction) to the substrate, to do this they create 

adhesions complexes which form and disintegrate at different stages of locomotion [26].  
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A shark tooth model (Figure 1E) taken from the ZBrushCentral website: 

http://www.zbrushcentral.com/showthread.php?61124-Monsters-by-skullbeast-(John-

Cherevka-s-W-I-P-)/page14 was used to represent the action of cell adhesions. 

Myosin II 

The role of the motor protein myosin II in cell motility remains ambiguous. Cell biologists 

generally assume that contractile force generated by non-muscle myosin II at the rear is 

necessary for tail retraction events during cell locomotion [31]. To simplify this complex 

structure, the Gear3D ztool (Zbrush) was used as a mesh to give the impression of a molecular 

motor (Figure 1F). 

L. monocytogenes model 

The L. monocytogenes  model was sculpted in Zbrush. 

Tank  

The tank model (Figure 1G) was downloaded for free from the CGTrader website 

(https://www.cgtrader.com/free-3d-

models/vehicle/military?keywords=soviet+heavy+tank+SMK+USSR+1939).  

 

Texturing  

With the exception of the tank, all models were imported into Zbrush for Polypainting onto the 

surface and subsequently the texture, normal, and displacement maps were exported. 

In some scenes the whole keratocyte cell needed to be viewed cross-sectionally to reveal the 

structures within. To achieve this effect without creating a new model, a grayscale transparency 

map was created and attached to the material in the Maya Hypershade. The map works by 

concealing the texture map of the model where the areas are black but maintaining the texture 

in the white regions. 

 

Animation  

http://www.zbrushcentral.com/showthread.php?61124-Monsters-by-skullbeast-(John-Cherevka-s-W-I-P-)/page14
http://www.zbrushcentral.com/showthread.php?61124-Monsters-by-skullbeast-(John-Cherevka-s-W-I-P-)/page14
https://www.cgtrader.com/free-3d-models/vehicle/military?keywords=soviet+heavy+tank+SMK+USSR+1939
https://www.cgtrader.com/free-3d-models/vehicle/military?keywords=soviet+heavy+tank+SMK+USSR+1939
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Actin polymerisation  

Actin monomers and filaments were key features in the animation and appeared on 

numerous occasions. Animating polymerisation involved sequential movement of single actin 

monomers to join the end of existing filaments at the front. Initially, a branched network of 

actin filaments was modelled in the scene, on to which new actin monomers were added. 

Each actin monomer in a growing filament had their geometry constrained to their 

individual motion path and importantly the helical orientation of the filaments was maintained. 

The first 5 actin monomers each moved along the curve over 1 sec, so that the viewer could 

more clearly observe their addition to the existing stationary filament ends. The remaining 

monomers travelled over a 0.5 sec period; this was done so that the overall movement of the 

cell leading edge became more obvious (Figure 2).  

Cell migration 

Most cells have membrane ruffles at the leading edge as they translocate. To create a 

realistic effect of this flowing movement, a lattice deformer was applied to the cell. This 

placed a cage around the cell so that the mesh could be manipulated using the lattice vertices. 

The lattice applied was subdivided into 16 x 8 x 5 divisions. Over the course of the actin 

polymerisation animation, the lattice vertices were manipulated individually every 30 frames 

to create a ‘natural looking’ cell protrusion and ruffling motion (Figure 3).   

Mountain climber  

The SuperAverageMan model was rigged in Zbrush and adjusted into various poses for 

each of the climbing stages. They were imported into Maya where the individual poses were 

positioned against the rock face model. Parts of the climber’s body were coloured green to 

highlight areas that corresponded to parts of the crawling cell e.g. extension of arms being cell 

protrusions, hands the adhesions, and legs representing retraction of the cell rear (Figure 4A 

and B). 

Tank movement 

Animation of the tank model was done in Maya. The treads and the individual wheels were 

first separated from the tank body. A single tread was duplicated and rotated to form a circle, 

and then attached to a NURBS primitive circle using the Wire Tool. The shape of the treads 
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was adjusted to resemble the original tread. The treads and wheels were keyframed and 

parented to the tank body (Figure 4C and D).  

Tank analogy cell 

The whole cell animation required multiple components moving simultaneously (Figure 

5). Actin monomers needed to be added to the existing branched filaments at the front and 

removed by the action of the myosin motor from the filaments at the rear. Movement of the 

entire cell was achieved using the lattice deformer as described previously. Actin monomers 

were animated along new motion curves that originated from the rear to join onto the growing 

filaments at the front. The gear model which represented the myosin motor was animated to 

rotate in time to the removal of the actin monomers from the rear filaments.  

The complex cycle of cell adhesion turnover was simplified by showing a change in colour 

of the shark teeth (Figure 5). Nascent adhesion sites called focal complexes that form under 

the leading edge lamellipodia were coloured dark red and animated digging into the substratum. 

Larger focal adhesions which remain stationary relative to the substrate as the rest of the cell 

body advances were pink. Focal adhesions at the retracting cell edges, that eventually detach 

(shown to fade away) were purple.  

 

Lighting and Rendering 

Various lighting effects, including spotlights and Physical Sun and Sky (PSS) lighting were 

used. All scenes were rendered in Maya using Mental ray, at HD 540 (960x540), resolution 

72.0, sampling quality of 0.25.  

Post-production and compositing 

Adobe After Effects (AE) was used to composite all the rendered scenes, addition of any 

special effects, text, and the voice-over. 

Various microscope movies were included to introduce the topic of cell migration. Circular 

masks were used to give the impression that the viewer was looking down a microscope. Masks 

were also used to create a split screen effect for the mountain climber analogy scene. Fading 

effects were used for the slow transition overlays of the tank model and the whole cell.  
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The final animation was rendered in AE at 1920x1080 resolution with an H.264 video 

compression; an audio output of 44.100 Hz, 16 Bit stereo.  
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Results 

Development outcomes 

The final animation was 3 minutes 30 seconds long with narration, and can be viewed at 

https://www.behance.net/shereenkadir entitled: ‘How cells move’ animation. The initial title 

screen appears with a cell that is used throughout the animation. An introduction to the topic 

of cell migration is accompanied by a series of microscope movies of real cells. The camera 

zooms into the 3D cell to introduce actin and an explanation of actin polymerisation driving 

cell protrusion (Figure 6A-E).  

The next stage of the animation visualises the actin polymerisation at the leading edge and 

the general assumption in the field that a function of actin is to push the front of the membrane 

out, which is based on the L. monocytogenes experimental data (Figure 6F).  

The final parts of the animation depict the two differing analogies about how cells move. 

First, the mountain climber analogy describes a widely accepted view of cell migration. Here 

the stills of the climber and the cell are shown as a split-screen with a slow morph between the 

frames (Figure 6G). Next, the Insall lab’s hypothesis is explained, whereby the treads of a tank 

represent the movement of actin to drive cell migration. Here the tank is fully animated and the 

various proposed mechanisms (actin polymerisation/depolymerisation, focal adhesions, and 

myosin) inside the cell are revealed sequentially whilst morphing to the model of the tank 

(Figure 6H).   

Initial feedback from experimentalists 

The Insall lab was consulted throughout the production process. Overall, they were pleased 

with the outcome of the animation and felt it successfully presented the two analogies. The 

design and appearance of models (actin, cell, mountain climber, and tank) were commended. 

Whilst the cell was very simplified the detail of the cellular machinery was at the right level so 

as not to overwhelm the viewer with excess information. Most notably, the use of 

uncomplicated ‘recognisable’ meshes to represent complex cell machinery (myosin as a gear, 

and adhesions as shark teeth) to imply their function was positively received. Inclusion of a 

voice-over (spoken by a postdoctoral scientist who had been involved in generating the 

experimental data) was also praised. Some multimedia studies suggest that users shown 

https://www.behance.net/shereenkadir
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animations with narration find them far more effective at improving learning and understanding 

than text alone [32]. 

The mountain climber scene was mostly criticised because it was not animated fully in the 

same manner as the rest of the animation, possibly weakening the visual strength of the 

analogy. The climber model could have been rigged and animated in Maya, but this was not 

achieved due to time constraints.   

Another criticism of the scene was that the behaviour of the actin filaments at the front of 

the cell was only visible, whereas the cell in the tank analogy showed the behaviour at the rear 

as well. This was a deliberate choice by Professor Insall to purposefully focus only on the front 

filament, because the idea was to highlight the gripping action by the forward protrusion phase 

(i.e. the climber’s hands and the cell adhesions that appear), which many other scientists 

believe to provide the force for initiating movement. Although the filaments at the rear of the 

mountain climber analogy cell would also be depolymerising, the timing is not the same as for 

the cell in the tank analogy. The focus of the mountain climber analogy cell was to make it 

clear that climbing mechanisms consist of two distinct phases – protrusion of the front and then 

retraction behind, at the climber’s arms and legs, whereas the tank analogy cell can work 

continuously. Therefore, addition of the depolymerising filaments at the rear of the mountain 

climber analogy cell might have added too much visual clutter.  

The tank analogy cell scene could have also been improved by making the actin 

polymerisation/depolymerisation cycle more visually striking. Whilst the animated movement 

does capture the cyclical nature of the process nicely, perhaps a colour change would have a 

positive effect. 

Lastly, some commented on the fact that the cell adhesions were present in the animation 

but were not referred to in the narration.  In hindsight it would have been a good idea to mention 

them. 

Animation screening to scientists 

The main purpose of the animation was to communicate to the cell biology community a 

generally accepted existing hypothesis of cell locomotion and explain an alternative hypothesis 

proposed by the Insall lab, illustrating their differences, and the advantages of the new model.  
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Scientists working at the CRUK Beatson Institute were invited to an animation screening 

and feedback was acquired through questionnaires. The anonymous comments were a mixed 

range of opinions and some were extremely positive in their feedback. However, others 

questioned the science behind the Insall lab hypothesis, one could argue that promoting such 

discussion is the purpose of the animation.  
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Discussion 

One of the main aims of the project was to communicate effectively new ideas, in this case 

an alternative hypothesis of how cells move compared with the current dogma in the field. The 

animation was commissioned because the two analogies were particularly difficult to 

comprehend when explained only on paper or verbally. Based on the feedback from the Insall 

lab and questionnaires following screenings to a wider scientific audience, the animation 

generally enhanced people’s understanding and appreciation of the subject matter. The 

narration in the animation was positively received and set the scene for the two analogies very 

well.  The tone of the language was purposefully not too difficult with minimal technical detail 

for the target audience to follow. 

Most scientific papers are written in a dry and unemotional way (devoid of descriptive 

language) so that the focus is on the data, aiming to minimise bias. Storytelling is a contentious 

area when it comes to scientific writing and visual communication. Rich narratives and the use 

of analogy can emphasise a message and engage the viewer without bombarding them with 

minutiae [33]. However, one could argue they are intrinsically persuasive, and perhaps there is 

a danger of embellishment in order to frame a story, particularly if critical information is 

restricted from the audience, which raises ethical considerations [34]. A greater transparency 

through the use of citations of the data from which the visualisation is based is possibly one 

remedy [25]. 

The depiction of the cell and protein players was generally praised by the viewers. 

Although it was greatly simplified (containing no organelles, displaying only the proteins of 

interest, some of which were as analogies of their function), this was intentional so as not to 

overwhelm the viewer. Many studies have shown that consideration of cognitive load is 

essential when designing multimedia for learning and communicating ideas [32]. Furthermore, 

it would have been impractical to try and replicate the true density and scale of proteins, 

because the size of the actin monomers relative to the whole cell would be far too small to 

observe clearly in the animation. Furthermore, imitation of a more ‘authentic’ cellular 

environment would not necessarily contribute to the goals of the animation.  

Investigating effective methods to evaluate analogical arguments where 3D animation is a 

medium is clearly necessary. A larger sample of participants and testing groups from different 

institutes would be worthwhile for meta-analysis in this study. In fact, it could be argued that 
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the scientists at the Beatson Institute may be biased in favour of the models because they may 

have an existing knowledge of the subject or have been to seminars by Professor Insall on the 

topic already. For future analysis, the participants could be assessed in their prior knowledge 

of the subject and then potentially categorised into different groups based on their existing level 

of understanding.    

There are numerous studies in the literature that test the efficacy of animations for teaching 

purposes, however there is no general consensus on their effect on long-term memory retention, 

and varying degrees of improvement in examination scores [20, 35]. Many simply draw 

conclusions from student satisfaction surveys and rely on the outcome of test scores confined 

to one school. Nevertheless a lot of these studies revealed animations generally enhanced 

enjoyment and satisfaction. A recent study by Shahani and Jenkinson examined the 

effectiveness of interactive analogical models on undergraduate chemistry students’ 

understanding of bond energy curves [36]; the data showed students failed to correct visual 

descriptions of energy wells. The authors suggested cognitive overload was a problem and 

highlighted the importance of careful design.  

A 3D designer has to accomplish a fine balancing act when creating interactive or animated 

analogy visualisations; taking on board multimedia theories, considering the audience’s 

existing knowledge, and avoid overloading the viewer [8, 36]. 
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Conclusion 

Animations may not just be useful to communicate known and accepted hypotheses, but 

could also enable scientists to question and discover why their hypotheses may or may not 

work. The benefits of using visual analogies to convey complex molecular and cellular data in 

a more palpable form is an interesting area of research, although it is clearly in need of more 

effective evaluation methods.    

Researchers have access to a great abundance of scientific data, and the best way to 

visualise this wealth of information remains a challenge. Digital media can reach an 

increasingly wide audience, and more ideas may be shared this way. Whilst many scientists 

still use pen and paper to enhance their thought processes and communicate ideas to their peers, 

animations may one day evolve into a modern-day thinking tool. This could become 

increasingly popular as computer technology for creating molecular visualisations based on 

real data continues to become more widespread, accessible and user-friendly. 
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Figure Legends 
 
Figure 1  
Model assets used in the animation. (A) Keratocyte cell. (B) Actin filament and monomer. 
(C)  Mountain climber (SuperAverageMan ztool). (D) Rock face. (E) Shark tooth (to 
represent cell adhesions). (F) Gear (to represent myosin II). (G) Tank.  
 
 
Figure 2  
Animating actin polymerisation. (A and C) Actin monomers constrained to individual motion 
curves and keyframed in Maya. (B) Plan for actin polymerisation at the leading edge and 
rendered views. (D) Actin pushing L. monocytogenes inside the cell. 
 
 
Figure 3  
Animating keratocyte crawling. (A) Cell with the lattice deformer in Maya. (B and C) Top 
views with lattice vertices adjusted after 30 frames.  
 
 
Figure 4  
Mountain climber model rigged in Zbrush (A) and positioned on the rock face (B). 
Animating the treads of the tank model in Maya (C and D).   
 
Figure 5 
Rendered scenes of the tank analogy cell. (A and B) Whole and cross-sectional cell views. (C 
and D) Focal adhesions depicted as shark teeth; larger adhesions coloured pink and nascent 
complexes in red. (E and F) Actin depolymerisation at the rear and myosin motor action 
(green gear); dissociation of mature focal adhesions (purple). 
 
 
Figure 6 
Scenes from the completed animation. (A) Title screen. (B and C) Introduction to cell 
locomotion. (D and E) Explanation of the role of actin and polymerisation in cell movement. 
(F) L. monocytogenes experimental data. (G) Mountain climber analogy. (H) Tank analogy. 



Supplementary Figures  
 
S1 A: Software and a brief description of their use in the project  
 

 
Software 

 
Description of use 

Maya 2015 (Autodesk)  
(http://www.autodesk.com/education/free-
software/maya) 

Modelling and Animation 

Molecular Maya (mMaya) (Clarafi) 
(https://clarafi.com/tools/mmaya 

Free plugin for Autodesk Maya that lets 
users import, model and animate 
molecular structures 

Zbrush (Pixologic) 
(https://pixologic.com) 
 

For improved modelling, sculpting and 
texturing 

Adobe Audition CC 2015   
(http://www.adobe.com/uk/products/audition.html) 
 

Audio editing and mixing application 

Adobe After Effects CC 2015   
(http://www.adobe.com/uk/products/aftereffects.html) 

Digital visual effects, motion graphics, and 
compositing application 

Adobe Photoshop CC 2015   
(http://www.adobe.com/uk/products/photoshop.html) 

Raster graphics editor 

 
 
 
  



S1 B: Microscope movies used in the animation 
 

Movie 
 

Cell type Source 

A Chick heart 
fibroblasts 

(Kadir et al.2011) http://jcs.biologists.org/content/124/15/2642.long 

B Neutrophil (Alberts et al. 2008) Molecular Biology of the Cell, 5th addition. 
C Dictyostelium Insall Lab 
D Mouse skin 

melanoblasts and 
keratinocytes 

Shereen Kadir (unpublished data) 

E Fish Keratinocyte https://www.youtube.com/watch?v=RTjYXBnMcgs 
F Mouse skin 

melanoblasts 
Shereen Kadir (unpublished data) 

G Dictyostelium Insall Lab 
H Fibroblast with 

L.monocytogenes 
(Alberts et al. 2008) Molecular Biology of the Cell, 5th addition. 

 

 

 
 

https://www.youtube.com/watch?v=RTjYXBnMcgs
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