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Abstract 

Environmental sustainability considerations are often treated as an add-on to building design, following 

ad hoc processes for their implementation. As a result, the most common problem to achieve a 

sustainable building outcome is the absence of the right information at the right time to make critical 

decisions. For design team members to appreciate the requirements of multidisciplinary collaboration, 

there is a need for transparency and a shared understanding of the process. This research presents the 

findings from 25 in-depth interviews with industry practitioners concerning 10 case studies of 

buildings, which achieved high sustainability certification ratings (e.g. BREEAM, Passivhaus, Part L), 

to identify best practices in sustainable building design (SBD). The results identify the key players’ 

roles and responsibilities, tasks, deliverables and critical decision points for SBD. These components 

have been coordinated explicitly in a systematic process that utilises Information Communication 

Technology (ICT), Building Information Modelling (BIM), and Building Performance Analysis (BPA) 

software to realise the benefits of combining distributed teams’ expertise. 

Keywords - Design process; Collaboration; Sustainability; Building Information Modelling (BIM); 

Building Performance Analysis (BPA); Concurrent Engineering (CE); Integrated DEFinition methods 

(IDEF). 

Introduction 

Sustainable performance of buildings is currently a major concern among AEC (Architecture, Engineering 

and Construction) professionals due to measures such as building legislations in addition to national and 

regional targets (Schlueter and Thesseling, 2009). The overall goal is to reduce the environmental impact of 

buildings, while enhancing human comfort and health. To address this issue, many countries and 

international organisations have initiated rating systems (e.g. BREEAM, LEED, Passivhaus) to assess 

sustainable construction (Azhar et al., 2011; Haapio and Viitaniemi, 2008). Currently, these assessment 

methods are used as frameworks for environmental design by building professionals, although they provide 

no guidance over the design process. Also, the design of such high performance buildings is a complex, non-

linear, iterative and interactive process that requires effective collaboration between the multidisciplinary 
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teams from the early stages in order to achieve sustainability outcomes (Bouchlaghem et al., 2005; Yang, 

Zou, and Keating, 2013).   

Building professionals utilise performance analysis tools extensively in order to predict and quantify aspects 

of sustainability from early design stages and significantly ameliorate both quality and cost during a 

building’s life cycle (Attia, Beltrán, De Herde, and Hensen, 2009; Crawley, Hand, Kummert, and Griffith, 

2008; Smith and Tardif, 2012; Tudor, 2013). As a result, building performance assessment workload 

becomes heavier at the early design stages compared to traditional project delivery. Additionally, timely 

contributions of design participants and accuracy of the information delivered are important for SBD to be 

successful (Brahme, Mahdavi, Lam, and Gupta, 2001). For this reason, the most significant challenge to 

delivering a successful sustainable building is communication and co-ordination across a multidisciplinary 

team (Robichaud and Anantatmula, 2010). To date, the design process often suffers from lack of 

collaboration between design teams of different organisations. As a result, the most common problem to 

achieve a sustainable outcome is the absence of appropriate information to make critical decisions. 

Therefore, efficient and systematic information exchanges between designers, consultants and sub-

contractors become essential to achieve design goals (Pala and Bouchlaghem, 2012). Consequently, 

software and hardware solutions that support communication become a necessity (Peña-Mora, Hussein, 

Vadhavkar, and Benjamin, 2000). However, efficient collaboration does not result solely from the 

implementation of information systems; their effective use is hindered by the fact that defined strategies, 

which consider organisational and project requirements, are currently missing (Bouchlaghem, 2012). 

Conflictingly, the complexity, amount of specialisation and individual project needs do not permit the 

process to be defined in an explicit way. Dynamically changing process of SBD, requires a highly flexible 

structured workflow management system (Chung et al., 2003). 

Crawley and Aho (1999) describe building design as a ‘top-down’ process where the original concept is 

worked towards detailed design, allowing a coordination between parties involved. In contrast, performance 

assessment follows the reverse route and is a ‘bottom-up’ process where environmental performance is 

synthesised based on characteristics and technical details of the building elements. In SBD, the bottom-up 
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processes should inform the top-down managerial process in order to achieve quality assurance for a holistic 

sustainable outcome. This assimilation presents a significant challenge to the management of SBD process, 

which is exacerbated by other factors affecting the quality of the final design, such as lack of coordination in 

design, unclear or missing information, and poor workmanship (Cnudde et al., 1991; Hammarlund and 

Josephson, 1991; Burati Jr et al., 1992; Love and Li, 2000).  Despite the increasing adoption of ICT, day-to-

day communication relies mainly on face-to-face meetings, or basic media such as phone and email. This 

fact undermines the importance of the contribution of certain disciplines at the early stages of design by 

making it ad hoc despite in reality being crucial for sustainable design. The actors’ roles within the 

multidisciplinary design team need to be re-defined to reflect the necessary relations between a number of 

diverse and interdependent tasks and activities. As the scale and scope of cooperative tasks is increasing, the 

shared level of responsibility for design aspects should be reflected in the use of collaborative systems, and 

thus, defined so as processes become more transparent and understood among the project’s stakeholders. 

This research is intended to develop a process model for SBD, which can assist current industry practices to 

depart from ad hoc collaboration workflows. The following section frames the research problem and 

identifies the gaps in existing knowledge. 

Collaborative SBD process and the potential of BIM: a review of literature 

Previous attempts to integrate sustainability considerations with the building design process, lack the 

element of sequencing of activities (Cinquemani and Prior, 2010; Bordens and Abbott, 2002; Reigeluth, 

1999), and reasoning of decisions (Potts and Bruns, 1988; Lewis and Mistree, 1998). This problem is further 

exacerbated by the varying information needs of design disciplines (Brahme, Mahdavi, Lam, and Gupta, 

2001), which result in difficulties to make optimal design decisions. Organisational approaches for 

collaborative design (Mendler and Odell, 2000; Laseau, 2001) have resulted in generic descriptive models of 

the design process, such as the RIBA Plan of Work 2013 (RIBA, 2013). RIBA (2013) considers 

sustainability in a checklist, and does not integrate them into the design process along with the core 

objectives.  
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Appropriate use of ICT (as a way of working in BIM) could facilitate integration of sustainability in the 

process, but it is likely to happen ‘only if the design managers employ a structured, systematic approach’ 

(Pala and Bouchlaghem, 2012). This approach to information management would ensure that participants 

acquire the right information at the right time. Centralisation of information in a Common Data Environment 

(CDE), "an online place for collecting, managing and sharing information" (BSI, 2013), would allow high 

level of coordination. Online collaboration platforms (e.g. Viewpoint, Asite, Conject) facilitate a CDE for 

communication of project information among the project teams (Anumba, Baugh, and Khalfan, 2002). For 

SBD, the need for coordinating a larger amount of information from a wider range of participants, as 

supported by CDEs, increases significantly (Bouchlaghem et al., 2005; Yang, Zou, and Keating, 2013).  

Although BIM adoption in the UK has increased in recent years (NBS, 2015), there is scant evidence that 

sustainability has been systematically considered as an integral part of the BIM collaborative process. While 

in theory nD modelling has been made possible by the technological advancements, in practice it has not 

been effectively implemented in a holistic way. Some BIM related frameworks are based on the 

international assessment rating systems (Nofera and Korkmaz, 2010; Biswas and Tsung-Hsien Wang, 2008; 

Wong and Fan, 2012; Sinou and Kyvelou, 2006; Ghosh et al., 2011; Lützkendorf and Lorenz, 2006), while 

others have created tools that are integrated into BIM design software to automate performance based 

decision making (Schlueter and Thesseling, 2009; Welle et al., 2011; Feng et al., 2012; Huber et al., 2011; 

Mahdavi et al., 2001). Organisational aspects of BIM-enabled sustainable design have not been addressed 

sufficiently in the literature. The biggest challenge that this incorporation faces is the lack of coordination 

among people, tools, deliverables, and information requirements (Ruikar, Anumba, and Carrillo, 2006; 

Succar, Sher, and Williams, 2012; Succar, 2009). 

Despite the various performance improvement initiatives (e.g. BIM mandate, Cabinet Office, 2011), the 

current business model in the construction industry remains highly fragmented. This fragmented way of 

working does not promote interactions between stakeholders, resulting in “lonely” Level 1 BIM maturity, 

instead of collaborative Level 2 BIM maturity (Cabinet Office, 2011). There is still no comprehensive and 

structured process to assist professionals for planning and delivery of SBD, from the early stages, so as to 
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harness the intellectual inputs of all building professionals’ disciplines. Due to the absence of a well-defined 

process, the implementation of a collaborative system takes place in an ad hoc manner (Bouchlaghem, 

2012). Due to the iterative nature of the design process and the complex interrelationships between 

disciplines, the management of this ad hoc process becomes difficult from the early stages. 

A review of literature, as summarised in this section, suggests a lack of a common definition for a BIM-

enabled sustainable design process. Sustainable design remains subject to interpretation, and ad hoc 

processes are common. As each discipline works in isolated silos, the design outcome is compromised by 

failing to capture and integrate their inputs in a timely fashion. Clear definition of a multidisciplinary SBD 

process will assist practitioners to work collaboratively and add value to the design by harnessing the 

intellectual inputs of the various stakeholders.  

The scope of this research is to integrate the BIM framework (Succar, 2009) with the definition for 

sustainability (Rodriguez, 2002), emphasising on the environmental dimension of the SBD process. This 

research attempts to identify lessons learnt from the best practices so that it can be used to inform the design 

of sustainable buildings in the future. It is intended to identify the components of SBD and develop a 

process model, which can assist industry practices to depart from ad hoc collaboration workflows.  

Research methods 

This research has adopted an abductive approach (iterative process of induction and deduction) using 

multiple case studies (Dubois and Gadde, 2002; Levin-Rozalis, 2004; Reichertz, 2004; Svennevig, 2001). 

First, content analysis (Elo and Kyngäs, 2008) has been utilised to identify the components of SBD and 

develop the framework presented in section “SBD process components”. The framework contains the 

components that enable the use of BIM workflows during multidisciplinary collaboration. Then, a structured 

process that coordinates the SBD variables (roles, tasks, information requirements, and sustainability 

criteria) is illustrated in section “SBD process decomposition”. The research adopts the concept of 

Concurrent Engineering (CE), which is a holistic approach to the design, development and production of a 

product (Love, Gunasekaran, and Li, 1998); CE is an effort to effectively integrate all aspects of product 
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development, by performing simultaneously a variety of activities that used to be done sequentially. 

The Integrated DEFinition (IDEF) compendium of methods have been designed to support information 

integration within CE systems that achieve better performance in terms of efficiency (Mayer et al., 1995).   

IDEF0 and IDEF3 process modelling techniques are used to map the interdependencies of components, 

based on the narratives of design team members collected using the Critical Decision Method (CDM)  

(Klein, Calderwood, and Macgregor, 1989). The following section explains the techniques adopted for 

collecting, analysing, and interpreting data. Figure 1 illustrates the design and phases of this research. 

Selection of interviewees 

A non-probabilistic, purposive sampling approach was followed based on selection criteria for the best 

practices. Expert Sampling (Klein, Calderwood, and Macgregor, 1989), which is a sample of persons with 

known or demonstrable experience and expertise in the area, has been selected. The best practices are 

defined as the ones that manage to achieve sustainability objectives in the most economically efficient way 

in terms of time, cost, and effort involved. The interviewees were selected based on relevant educational 

background, industry experience (5 to 25 years), involvement in award-winning projects for sustainability, 

and for being part of organisations with BIM adoption policy.   

Data collection 

During three years, three sets of in-depth interviews were conducted, resulting in a total of 25 semi-

structured interviews with industry experts from 15 organisations. The procedure of the CDM consisted of: 

(i) selection of an incident that had a significant effect on the sustainability outcome (positive or negative), 

(ii) unstructured account of incident followed by questions to build context, (iii) construction of incident 

timeline, (iv) identification of critical decision points, (v) decision points’ probes to obtain justifications, (vi) 

incident reflection and suggestions. Ten (10) ‘best practice’ case studies were identified and 20 incidents’ 

narratives were collected to examine roles and responsibilities, resources, information exchanges, 

interdependencies, timing and sequence of events, and decisions points. In total, they have resulted in 24 
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hours of recorded material. Reports and documents were also collected for theoretical triangulation. Table 1 

provides a summary of the Case Studies performed and the design roles interviewed for each case.  

Data analysis  

Phase 1 of the research has been exploratory, conducted to investigate current practices of sustainability 

integration with BIM processes. It has resulted in the development of a conceptual framework for the 

components of SBD by combining content with thematic analysis. Additionally, an IDEF0 process model 

(KBSI, 1993) was created following the RIBA (2013) process. The IDEF0 model was presented to the 

industry practitioners, validated for its accuracy, and enriched by more information performing exploratory 

and predictive iterations (Yin, 2013). Although IDEF0 is widely used in research due to its clarity of 

modelling activities and information flows, it cannot support information process flows or capture 

concurrent processes and there is no consideration of time (Mayer and DeWITTE, 1999). IDEF3 overcomes 

the shortcoming of IDEF0 by capturing descriptions about sequences of activities, while also identifying 

milestones of the process from different perspectives (Mayer et al., 1995). The IDEF3 method manages to 

remain simple while maintaining a high descriptive power (Dorador and Young, 2000). Table 2 shows the 

symbols used for the process description schematics. The IDEF0 method uses the ICOM (Input, Control, 

Output, and Mechanism) (KBSI, 1993). In IDEF3, the boxes represent real world processes as happenings; 

those are referred to as Units of Behaviour (UOB). The arrows that connect the boxes indicate precedence 

between actions. The junctions represent constraints and enable process branching. The junctions involve 

choices among multiple parallel or alternative sub-processes. The logical decisions include: AND (&), OR 

(O), EXCLUSIVE-OR (X), and synchronous or asynchronous start and finish of the processes. The objects 

are represented as circles that show their different states connected with arrows that have UOB’s referents to 

indicate the entry, transition, state and exit conditions (Mayer et al., 1995).  

Phase 2 consisted of two distinct sets of data collection. During the first set, the workflows were initially 

structured into separate IDEF3 models so as to identify patterns and relationships between them (exploratory 

identification of variables and properties). Then, the models were synthesised into a single IDEF process 
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decomposition. This has assisted in identifying gaps in the model. The second set was iterative, serving to 

validate the relationships that had been identified previously, and also completing the missing information. 

The resulted process model consisted of four level hierarchies (high to detail). During the final interviews, 

the protocol followed the IDEF process model structure. This process continued until no further information, 

related to the research questions, was provided by the experts (theoretical saturation) (Glaser and Strauss, 

2009).  

SBD process components 

The framework of components, presented in this section, provides the descriptions of the elements that 

constitute the SBD process. First, the components were identified and defined utilising content analysis (Elo 

and Kyngäs, 2008) and thematic analysis (Braun and Clarke, 2006). In section “SBD process 

decomposition”, these components were coordinated into a holistic process that establishes their 

interdependencies explicitly. Figure 2 presents the three levels of abstraction considered during the data 

analysis. “BIM-enabled Sustainable Design Process” is the main category of the classification. “Roles”, 

“Tasks”, “Deliverables”, and “Decision points” are the generic categories of the framework. “Contractual 

agreements” is an example of a sub-category of the generic category “Roles”.  

Roles, responsibilities (contractual agreements) and competencies (training) 

Given the requirements of multidisciplinary collaboration for SBD, specialised roles and responsibilities are 

needed. Although new roles have been identified to accommodate the core BIM uses (Barnes and Davies 

2014), the SBD roles have not been sufficiently defined yet (Barlow, 2011; Sinclair, 2013). In addition to 

traditional roles (e.g. client, architect, structural engineer), specialist roles from a range of expertise are 

required, including BIM manager, BIM information manager, BIM coordinator, BPA specialist, and 

Sustainability Consultant.  
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Tasks (activities) and implementation methods (inputs and outputs) 

This sub-section discusses the opportunities, challenges, and limitations for the implementation of BIM-

enabled SBD tasks utilising the existing technological enablers. 

BIM software use 

The selection of BIM software tools varies according to the type of project. Large organisations utilise a 

variety of software packages so as to combine the strengths of different tools. The interviewees stressed, 

however, that BIM is more about the ‘information tree’ process and less about the ‘software’ tools. 

“... it is almost as a little tree of decision making... so rather than getting information out at one stage, you 

need broad scale of thinking at one stage and then slightly more detail, and then slightly more detail 

again. So you get to the full detail again for performance. What you tend to do is get no information, no 

information, no information and then at the end get full data sheet, full information, full performance, full 

modelling, full testing at that point its kindda too late.” Architect/Sustainability Consultant 

Twenty interviewees out of twenty-five (20/25) are using the Revit suite for designing. Other tools used are 

ArchiCAD (2/25), Microstation (2/25), CATIA (1/25) and AECOsim (1/25).    

BPA software use 

A wide range of BPA tools were utilised depending on the sustainability criteria being examined and the 

stage of design at which analysis takes place. Architects argued the importance of having quick feedback at 

early stages of design when the building form is developed. Tools like PHPP (2/25), Sefaira (2/25), and 

EcoDesigner (1/25) are used for this purpose. However, for signing off concept design, detailed simulation 

is still needed, by a Sustainability Engineer utilising an NCM accredited dynamic simulation software 

package. The interviewees nominated the following accredited software packages: IES VE (5/25), 

DesignBuilder (1/25), Bentley Hevacomp (1/25), and TAS (1/25). 

Software interoperability 

A major enabler to achieve integration of BPA with BIM collaboration is interoperability. Figure 3 

illustrates the interoperability workflows between BIM authoring tools and the dynamic simulation NCM 
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accredited software. The figure shows that geometric information and properties of BIM models, if designed 

properly, can be seamlessly translated to be understood by BPA software tools. However, as it has been 

reported by the participants, the opposite process is not possible at the moment. This fact is a technological 

limitation that hinders integration of sustainability information directly into BIM. 

Utilisation of CDE  

Sustainability Engineers did not utilise CDEs for collaboration. One interviewee emphasised that “I am a 

sustainability specialist, I am not a specialist in BIM”, arguing that sustainability is not relevant to BIM 

collaborative processes. This viewpoint reflects the current state of implementing sustainability, and the lack 

of achieving nD modelling in practice. Furthermore, coordinating sustainability information that was 

required for BREEAM assessment was done manually, and was ad hoc. One interviewee reported that 

"sometimes we use the Tracker Plus system", but “typically all things happen via email” (BREEAM 

Assessor). As a result, BREEAM assessors spend a significant amount of time coordinating and validating 

the information provided by the project team.  

“It [BIM] has not affected the way I personally, manage sustainability… It is very important to embrace 

BIM because there are some very good efficiencies to be achieved if everyone is on board, if the design 

team is on board in a process of working together, using the same process.” Sustainability 

Consultant/BREEAM Assessor  

The interviewees argued that current platforms were not suited for coordinating the delivery of SBD, 

because they were not designed for this purpose. The interviewees suggested the need for a platform that 

integrates sustainability considerations within a BIM-enabled collaborative process. 

“I can see that being very valuable in the whole design process. But it’s still something under 

development…. There hasn’t been a platform developed for sustainability just yet.” Sustainability 

Engineer/BREEAM Assessor  

Deliverables and information requirements (format specification) 

The findings show that despite the capabilities of BIM software, there is consensus among the designers that 



11 

 

the design process is heavily driven by 2D drawings. Despite working in Level 2 BIM projects, the 

interviewees argued that it had not affected collaboration with other disciplines in a way that is anticipated 

in theory. One interviewee argued that “whether you do it in 2D or 3D or if you do hand drawings; 

fundamentally that will be the same” (Architect). Antithetically, a more streamlined process has been 

documented (CS5/Architect), inserting climate data and sustainability targets into the geometric model 

before sharing it with the sustainability specialists for BPA.  

Critical decision points and benchmarks (rules, regulations, directives) 

The identification of decision points is discussed in PAS1192:2-2013 (BSI, 2013) as a critical aspect of the 

BIM process. Decision points in phase-gate review comprise two types of gates; hard-gates when the design 

freezes until the review is conducted, and soft-gates that allow the project to proceed in parallel, thus 

enabling a CE approach to SBD. The hard-gates serve the purpose of committing to decisions collectively. 

Additionally, soft-gates are identified throughout the process so as the decision making points occur in 

parallel. The benefit of implementing soft phase-gate reviews is that the project is allowed to proceed in 

parallel with conducting the review. In order to achieve sustainability objectives, design strategies are 

implemented and assessed towards a set of criteria and benchmarks. The timing when these decisions take 

place is crucial, since once commitments have been made early in the process, it is more costly to repeat the 

work that has already been done. To achieve that, the right information should be delivered to the right 

people at the right time. Identifying critical decision points assists in determining the loops of an iterative 

design process. A mapped process that can be audited, along with soft-gates and hard-gates for SBD, would 

provide assurance that the sustainability objectives would be met. 

The IDEF3 model’s Junctions serve the purpose of providing soft-gates in the process of integrating 

sustainability considerations and criteria at the right time. Table 3 includes the performance criteria 

identified from the case studies’ narratives aligned with the Junctions of the IDEF3 decomposition. 
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SBD process decomposition 

This section discusses the SBD components coordinated into a holistic CE process. The process model 

developed, utilising IDEF0 and IDEF3 notations, aligns with RIBA’s (2013) stages 0 (Strategic Definition), 

1 (Preparation and Brief), and to 2 (Concept Design) (depicted in Figure 4). These stages correspond to the 

three stages of briefing; Strategic, Initial, and Final, respectively. The definition of sustainability is re-

framed as the level of detail increases. Sustainability aspirations need to be expressed qualitatively at stage 

0, then, quantified (e.g. metrics, benchmarks) at stage 1, and finally, tested and defined explicitly at stage 2. 

Feasibility of the criteria is the basis for optimising the design, by performing iterations at Concept Design 

stage. Therefore, it is important for design practitioners to ask the appropriate questions at each stage of the 

design process.  

Figure 5 presents the IDEF model’s master-map, which consists of three level hierarchies. Level 1 

represents the high-level IDEF0 process model decomposition aligning with the RIBA’s (2013) hard 

decision gates, and colour-coded accordingly. Level 2 contains the decompositions (sub-processes) of the 

Level 1 process. Level 3 contains the decompositions of the Level 2 processes. Levels 2 and 3 (IDEF3) 

provide granularity that demonstrates which functions are performed by each role, parallel activities, and 

soft-gates. The coloured UOBs are further decomposed into Level 3 and Level 4 sub-processes, which are 

not discussed in this paper. Table 4 contains the three levels of IDEF decomposition diagrams and Table 5 

the inputs and outputs of each UOB. The diagrams provide a simplified description of the relationships 

between BIM-enabled sustainability functions (as UOBs), and the gateways (as Junctions) for the iteration 

cycles of the SBD collaborative process. The inputs (information required) and outputs (information shared) 

of the functions are illustrated as Objects. The Objects’ states (e.g. Initial, Optimised, Approved, Shared) 

change as they are altered by the functions. 

Stage 0: Strategic Definition - NEED 

The collaborative project team needs to be established at RIBA Stages 0 and 1 (Sharp, Finkelstein, and 

Galal, 1999; Sinclair, 2013). This practice can facilitate the development of a robust project brief by 
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combining the perspectives of the multidisciplinary team. After the Client’s intent is clarified, the necessary 

appointments of design team members need to be made accordingly. Adoption of a common language for 

job titles, descriptions, and responsibilities would lead to clear objectives for the project management of 

sustainable buildings. This research has identified the main roles and responsibilities for SBD, presented in 

Table 6. 

It has been noted, by the Sustainability Engineers, that consultation directly with the Client at the briefing 

stage has recently become a lot more common. An Architect described that when the Client has clear 

sustainability aspirations, a Sustainability Engineer has performed early calculations for feasibility (climate 

analysis, site analysis) even before the Briefing stage has begun.  

“Traditionally, years ago, we were appointed by the architect, once they have almost won the competition 

and that’s too late to have any influence on the design. …the planning rules and the regulations mean 

you’ve got to do stuff much earlier on... They say… we need some input much earlier on so we don’t 

waste money.” Sustainability Engineer 

Combining findings from the interviewees with the literature, there are three key objectives for SBD: 

occupant comfort and health, environmental impact, and client satisfaction/approval along with the 

commercial aspects of building design. A holistic approach is needed that encompasses all the above 

aspects. However, the client’s sustainability aspirations were often manifested solely through formal 

certification and benchmark: 

“The big one really is BREEAM and what rating you want to get and then everyone knows what they are 

aiming to do. But, there are other things as well, such as EPC rating and a number of benchmarks really 

of what they want to achieve and that is probably the most important thing, I would say.” 

Architect/Sustainability Consultant 

The Level 2 decomposition of UOB 0 “Undertake Strategic Definition” (see Table 4) requires the inputs 

shown in the Level 1 hierarchy model, which are the Plain English Questions, Occupants’ Needs, 

Environmental Impact, and Client’s Aspirations. Then, UOBs 0.1, 0.2, 0.3, and 0.4 (and their sub-processes) 

are performed in parallel. The outputs of this function are the Strategic Brief, Employer’s Information 
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Requirements (EIR), Team Appointments, Project Objectives (e.g. BREEAM, Passivhaus), and 

Sustainability Aspirations (e.g. daylight performance, embodied carbon, renewable sources). 

Stage 1: Preparation and Brief - EXECUTION 

At Stage 1, the design team’s values are added to the Client’s sustainability aspirations, and become more 

detailed, as feasibility studies start. The result of this process sets specific benchmarks for sustainability as 

part of the Initial Project Brief. The interviewees suggested that sustainability aspirations are expressed in 

both extremes, from very detailed (usually commercial clients) to very vague, and everything in between, 

depending on how informed the Client is. In the case of a vague client brief, it is the Lead Designer’s/Project 

Lead’s responsibility to clarify expectations by consulting the Client before engaging the appropriate 

specialist subcontractors:  

“We have to be proactive, if the client doesn’t have any aspirations. For example, the lifecycle of 

materials, where the client might not have an understanding about the design life or any requirements. 

We would put a proposal to them. You can start to discuss how certain elements of the building would 

have an effect. You have to inform the client.” Architect 

UOB 1 “Prepare Project Brief” (see Table 4) requires the outputs of UOB 0 as inputs. The main activities 

that need to take place during this stage are the development of a BIM Execution Plan (BEP) and Schedule 

of Services (UOBs 1.1 to 1.5), based on the information contained in the EIR. When EIR are not provided 

by the Client, it is the Project Lead/Lead Designer’s responsibility to form a BEP that states the 

sustainability targets and implementation strategy, and communicate it with the rest of the design team. 

Furthermore, the Sustainability Objectives and Benchmarks/Metrics need to be clarified at this point to 

achieve design team alignment (UOBs 1.1 and 1.2).  Then, the decisions and commitments made should be 

compiled into the Initial Project Brief. 

Stage 2: Concept Design - DELIVERY 

The interviewees argued that SBD should be an iterative process that involves assessing, revising and re-

assessing sustainability as design progresses: 
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 “It is not a milestone, it is a continuous flow of information, backwards and forwards every time 

someone makes a modification. That information is updated and is mainly on people knowing when you 

are going to need the information.”  Sustainability Director/BREEAM Assessor 

Evidently, in cases that the CE approach was not implemented, the interviewees have failed to achieve 

sustainability goals: 

 “That analytical full modelling scenario permits us to isolate problems and come up with local solutions 

for them… If you do it too late in the process, you end up with half-baked solutions... A better solution 

takes more work upfront and more understanding upfront to be able to do that.” Architect/Sustainability 

Consultant 

An interviewee confirmed that the iterative process of design and assessment has helped to identify the 

tensions between design objectives so as to make adjustments early in the process. This fact has saved a 

significant amount of time and has assisted in achieving the project programme: 

“if needed to submit an alternative proposal provided planning, section and detail, that could have taken 

two weeks out of the programme for us and then two weeks to decide whether we should change it, we 

view it and then, if everything was ok, we would have issued the drawings like that next week…” 

Architect/CS4 

Once the requirements definition phase is completed (at Stage 1), the climate data, occupancy requirements, 

and site and topography information are available. The Interviewees described Stage 2 as a process that is 

divided into four phases of design and assessment loops: (i) building massing; (ii) fabric and layout 

optimisation; (iii) mechanical systems configuration; and (iv) simultaneous optimisation of building 

envelope and mechanical services. The functions (UOBs 2.0, 2.1, 2.2, 2.3, and 2.4) of the Level 2 hierarchy 

decomposition of UOB 2 “Develop Concept Design”, follow this structure (see Table 4). Table 7 synthesises 

the findings from the interviews (structured and unstructured descriptions) and an extensive literature review 

survey in order to define the BIM-enabled tasks for sustainable design (as UOBs). Each UOB is defined by 

the WHY (intent, sustainability aspirations), WHO (role, competencies/training, collaborators), WHAT 

(information requirements, inputs-outputs), and HOW (creation/processing, software tools, communication 

methods).  
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Climate and weather analysis (UOB 2.0) is a critical step of SBD that examines parameters such as 

temperature ranges, and precipitation. The aim of this task is to identify the appropriate design strategies that 

can be implemented for a specific location. During this analysis, the Sustainability Engineer generates 

weather data diagrams (e.g. temperature, humidity, solar radiation, wind roses) and interprets the results 

presented in a psychrometric chart (comfort zones) to determine the most efficient design strategies for the 

site. The weather data files are attained either directly by weather stations (e.g. US Department of Energy) or 

specialised software (e.g. Meteonorm). The user imports the Climate Data file in the software (e.g. Climate 

Consultant, IES, or Sefaira) and selects the Comfort Zone model of their preference (e.g. Adaptive Comfort 

Model in ASHRAE Standard 55-2010). Level 2 UOBs of concept design stage (2.1, 2.2, 2.3, and 2.4) have 

been further decomposed to Level 3 hierarchy (see Table 4), and their information requirements are 

described in Table 5. 

UOB 2.1 “Develop building massing” refers to the perception of the general shape, form, and size of the 

building. For SBD orientation and location on site are also important considerations for the adoption of 

passive design strategies such as daylighting and natural ventilation. The energy efficiency of those 

strategies is assessed by calculating the heating and cooling loads, aiming to reduce them as much as 

possible. For this reason, a series of analysis must take place (UOBs 2.1.2-2.1.6) before committing to 

design decisions. If the Architect is not able to perform BPA themselves, they would need to work closely 

with a Sustainability Engineer. The iterative loop of design and assessment continues until the Architect, 

Sustainability Engineer, and Client reach an agreement (J4). The output of UOB 2.1 is a generic 

representation, Level of Development/Detail 100 building mass 3D model, which contains indicative height, 

volume, location, and orientation (BIM Arch LOD100).  

UOB 2.2 “Optimise fabric and layout” is concerned with optimising the fabric performance by utilising 

passive design strategies (e.g. daylight autonomy, solar gains, natural ventilation, thermal mass effects and 

night cooling). The objectives of this task are to save energy and cut billing costs, while increasing comfort 

of the building’s occupants. Building materials (e.g. roofs, walls, windows, doors, and floors) need to be 

carefully selected based on criteria such as thermal performance, and carbon footprint. Furthermore, 
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building layouts determine the thermal zones of the building, which are the unit of analysis for performance 

evaluation simulations. Each thermal zone is defined by the occupancy requirements and operation schedule 

that vary depending on the function of each space. The iterative loop (design-assessment) continues until the 

Architect, Sustainability Engineer, Structural Engineer, and Client reach an agreement (J8). 

UOB 2.3 “Configure mechanical services” examines system comparison and selection, along with planning 

of sustainable active design strategies. Once the architectural, structural, and mechanical BIM models are 

developed, they should be coordinated utilising appropriate software (e.g. Navisworks, Solibri) in order to 

identify and resolve design clashes. The output of UOB 2.3 is a coordinated BIM LOD200 model that 

consists of generic placeholders graphically represented as a generic system, object, or assembly with 

information attached. 

UOB 2.4 “Develop holistic concept” entails the optimisation of the concept by examining the trade-offs 

between design elements in more detail (UOBs 2.4.6-2.4.13). Here, the Client, Architect, MEP (mechanical, 

electrical, and plumping) Engineer, Structural Engineer, Sustainability Engineer, and Cost 

Consultant/Contractor should work collectively until the design criteria are met (J17). 

Discussion and lessons learnt 

Due to the fragmented way of working, the existing building design process does not effectively permit the 

integration of sustainability considerations from the early design stages, hence compromising the 

achievement of sustainability objectives. ICTs offer a significant potential to develop an integrated SBD 

process with robust BPA, but re-thinking of existing processes is required (Garber, 2009). To make a step 

change towards sustainable development, assisted by the new technological improvements (software, 

hardware and networks), there is the need to specify the components and processes of BPA within BIM 

collaboration. The challenge that this incorporation faces is the co-ordination of all available elements which 

are necessary to achieve optimum results (Ruikar et al., 2006). To do this, critical SBD decisions should be 

considered timely in order to assess trade-offs between design aspects that are delegated to disciplines with 

varying aspirations. Therefore, the purpose of this research is to identify critical components and develop a 

SBD process model. The aim is to make explicit what is currently tacit among SBD experts and increase 
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understanding of the implications of certain design decisions. As demonstrated by the case studies, learning 

from experience can facilitate the creation of a more detailed process to guide future projects so as to avoid 

repeating mistakes. The IDEF process model coordinates ‘bottom-up’ BPA with ‘top-down’ organisation of 

stakeholders, as their inputs are brought early in SBD. Several lessons learnt from the case studies are 

described in the following sub-sections. 

Specifying roles, tasks and deliverables 

In order to enable (BIM) technologies to achieve their full potential, the roles within the design team need to 

be clarified, along with the tasks and deliverables, in order to become meaningful and useful for 

multidisciplinary collaboration. Instead of design participants working in isolated silos, between the hard-

gates (start and end of concept design), the soft-gates identified during the Work in Progress (WIP) (BSI, 

2013) can facilitate communication as well as clarify the process for novice practitioners to reduce 

uncertainty. The IDEF3 model developed in this research, can be utilised within a CDE to facilitate the 

implementation of collaborative SBD process and the delivery of concept design. The contribution of roles 

in design development reveals a front-loaded process for SBD, as described in the MacLeamy curve (CURT, 

2004).  

Repeatable detailed tasks 

The findings show that the process can be mapped in a more detailed manner than the RIBA (2013). The 

collaborative patterns, at concept design stage, are found to be repeatable for a variety of different non-

domestic building types such as education, healthcare, and offices. Thus, repeatable tasks and similar 

workflow patterns, roles and responsibilities have been identified. This fact enables the development of a 

systematic approach to SBD, based on CE principles (Love and Gunasekaran, 1997; Gunasekaran and Love, 

1998). This approach would allow lessons learnt to be incorporated for the design of future buildings. 

Need to redefine the design process 

It was found that traditional working processes cannot be employed to achieve complex, high-performing 
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buildings and that a CE design process approach is essential. During the traditional building design process, 

each stakeholder passes fixed information to the next one, which results in compromised design outcomes. 

What the CE approach for SBD suggests is that design solutions are developed, assessed and revised 

collaboratively, as design progresses. A single linear prescribed process is not viable for SBD because the 

complexity, amount of specialisation and individual project needs do not permit the process to be defined 

without iterations. The proposed SBD process, combines the sequential principles found in organisational 

design theory (task-oriented network) (Laseau, 2001) with the spiral metaphor (from abstract to concrete 

design concept) of the design process (Goldschmidt, 1942-2014; Watts, 1966). 

Formal and informal communication in a centralised system 

The issue of informal and formal communication also emerged from the case studies. Drawings, contractor’s 

programmes, and other information represent formal communication, and day-to-day communication 

represents informal organisation. Inconsistencies between the two are due to the lack of project team 

alignment for SBD. The interviewees described the role of the Sustainability Engineer as prominent, in the 

early design stages. However, their collaboration cannot be secured, with the current procurement methods, 

since in most cases their communication with the Architect occurs informally and is not recorded in the ICT 

systems. Therefore, their contribution in the design process is severely underestimated. In order to move 

from spider-web communication architecture to a hub-centric one (within a CDE), the existing 

communication patterns need to be understood to inform the centralised system.  

Conclusion 

This research has presented a holistic and systematic process for BIM-enabled SBD for the early stages. 

First, a framework of the critical components of SBD (roles, responsibilities, tasks, deliverables, and 

decision points) has been presented. Then, the timing and sequencing of the components’ sub-categories 

have been defined into a common CE process model. The IDEF process model allows ‘bottom-up’ 

sustainability considerations and ‘top-down’ coordination between the stakeholders. The model can be 

utilised within a CDE to facilitate the collaborative process at concept design stage. Nevertheless, it is 
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acknowledged that a single linear prescribed process is not viable for SBD, because the complexity, amount 

of specialisation, and individual project needs, do not permit the process to be defined without iterations. 

Additionally, the research has identified that the role of the Sustainability Engineer is prominent in the early 

design stages and is best suited to achieve a sustainable outcome. Essentially, it has been argued that a 

transparent SBD process that follows a specified communication pattern, can assist in achieving SBD 

efficiently in terms of time, cost, and effort. Further work, is thus, required to bring this framework and 

process into real life projects, where the efficacy of the approach could be tested. 
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Tables 

 

Table 1 Case studies’ summary and roles interviewed 

No. Building Project Type(s) Certification(s) Sustainability Objectives and Benchmarks Design Roles Interviewed 

CS1 Primary School BREEAM 

Excellent, 

Passivhaus 

BREEAM Excellent; 20% of energy use from renewable sources; Passivhaus 

certification; minimise embodied carbon of materials and systems; minimise energy 

use and the overheating of spaces; maximise daylight performance; maximise natural 

ventilation. 

Architect, Passivhaus 

Consultant 

CS2 Higher Education BREEAM 

Outstanding, 

Passivhaus 

BREEAM Outstanding; Passivhaus certification; specific attention to embodied 

carbon; minimize the embodied energy and embodied carbon of materials; minimise 

energy use and lifecycle carbon; maximise daylight maximise natural ventilation; 

maximise use of timber; test robustness for a 100 years. 

Architect, Passivhaus 

Consultant 

CS3 School  Passivhaus Passivhaus certification; innovation; maximise the use of low impact materials (such 

as timber cladding); maximise daylight; maximise natural ventilation.  

Architect, Sustainability 

Consultant, BIM Manager 

CS4 Public Library BREEAM 

Excellent 

BREEAM Excellent certification; compliance with English Heritage; functionality; 

implementation of state of the art heating combined cooling/ heating power system 

(CCHP); maximisation of daylighting; maximise natural ventilation; retaining  the 

external and internal fabric of the existing building. 

Architect 

CS5 College  BREEAM 

Excellent 

BREEAM Excellent; 10% renewable energy; 25% uplift on Part L; maximise natural 

ventilation; minimise embodied energy; selection of category A and B materials. 

Architect, Sustainability 

Consultant 

CS6 Hospital BREEAM 

Excellent 

BREEAM Excellent certification (9 point for energy performance); 40% uplift on Part 

L; efficient solar shading; maximise airtightness (2 air changes per hour); maximise 

insulation; minimise environmental impact. 

Architect, Sustainability 

Consultant 

CS7 Museum BEAM Plus BEAM Plus (a comprehensive environmental assessment scheme widely adopted in 

Hong Kong, similar to BREEAM and LEED); minimize energy consumption; reduce 

BIM Coordinator 
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No. Building Project Type(s) Certification(s) Sustainability Objectives and Benchmarks Design Roles Interviewed 

greenhouse gas emissions; Integrated Sustainable Building Design (ISBD). 

CS8 Office BREEAM 

Excellent 

BREEAM Excellent and A-rated Energy Performance Certificate (score 22); 96% of 

demolition and 94% of construction waste; renewable technologies for hot water, 

space heating and cooling. 

BIM Manager, BIM 

Coordinator 

CS9 Office BREEAM 

Excellent 

BREEAM Excellent; maximise daylight and natural ventilation, venting and cooling, 

passive heating, flexibility, disabled access, and new technology (Solartubes, thermal 

mass, solar control glass, low energy fitments, gas/biomass boilers, rainwater 

harvesting, local sensors) 

Sustainability Direct, 

BREEAM Assessor, 

Architect 

CS10 Higher Education BREEAM 

Excellent 

BREEAM Excellent; daylighting and solar control; power source selection; heating 

and cooling strategies. 

Architect 

- Non-domestic 

(unspecified case studies) 

N/A  Architect, Sustainability 

Director, Sustainability 

Engineer, BREEAM 

Assessor, Energy Modeller, 

Project Manager 
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Table 2 Symbols used for process description schematics1  

                                                 
1 (Knowledge Based Systems Inc. (KBSI), 1993; Mayer et al., 1995) 
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Table 3 Critical decision points (IDEF3 model Junctions) aligned with sustainability criteria 

Decision points Sustainability criteria 

Junction  

J4 

4.1. Overshadowing 

4.2. Building height 

Junction 

J8 

8.1. Embodied carbon of materials 

8.2. Toxicity of materials 

8.3. Recycled materials 

8.4. Glazing and shading 

8.5. Daylighting 

8.6. Insulation (U-Values, W/m²K) 

8.6.1. Wall 

8.6.2. Window 

8.6.3. Roof 

8.6.4. Ground floor 

8.7. Airtightness (at 50Pa) 

8.8. Ventilation and cooling 

8.9. Overheating 

8.10 Acoustic performance 

Junction J10 10.1. Energy consumption 

10.1.1. Heating and hot water 

10.1.2. Electrical load 

10.1.3. IT and small power 

10.2. Carbon/CO₂ emissions 

10.3. Display Energy Certificate (DEC)  

10.2. Energy consumption 

10.3. Energy source 

10.4. Artificial lighting 

10.5. Water consumption 

Junction 17 17.1. Controls and metering 

17.2. IT strategy 

17.3. Capital cost 

17.4. Lifecycle cost 

17.5. Occupancy and user involvement 

17.6. BREEAM rating 

17. 7 Energy Performance Certificate (EPC) score 

17.8 Robustness to climate change 
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Table 4 IDEF decomposition diagrams  

Hierarchical 

Level 
IDEF Process Decomposition Diagram 

Level 1 
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Hierarchical 

Level 
IDEF Process Decomposition Diagram 

Level 2 
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Hierarchical 

Level 
IDEF Process Decomposition Diagram 

Level 2 
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Hierarchical 

Level 
IDEF Process Decomposition Diagram 

Level 2 
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Hierarchical 

Level 
IDEF Process Decomposition Diagram 

Level 3 
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Hierarchical 

Level 
IDEF Process Decomposition Diagram 

Level 3 
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Hierarchical 

Level 
IDEF Process Decomposition Diagram 

Level 3 
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Hierarchical 

Level 
IDEF Process Decomposition Diagram 

Level 3 
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Table 5 Information Requirements of UOBs (Table 4 decomposition diagrams) 

Information Requirements (IR) 

Level 1 Decomposition 

 

Inputs of UOB 0 

• Plain English Questions 

• Occupants needs (e.g. comfort and health): activities, functions, number of people, equipment, personal 

preferences, acoustic requirements, identification of air pollutants (such as nitrogen oxides (NOx), volatile organic 

compounds (VOCs), and respirable particulate matter), and water contamination. 

• Environmental impact: location, topography and surroundings, materials’ availability, energy sources, water 

availability, ecology, risk of flood. 

• Client satisfaction: UK Level 2 BIM maturity, Government Soft Landings (GSL), Building Regulations (e.g. 

Part L), certification assessment scheme (e.g. BREEAM, LEED, Passivhaus), budget allowance, timeframe. 

 

Outputs of UOB 2 

• Final Project Brief 

• Design Programme 

• Cost Information 

• Concept Design Drawings 

• Architectural Outline 

• Structural Outline 

• Mechanical Outline 

• Construction Strategy  

• Sustainability Strategy 

Level 2 Decomposition 

 

 

Outputs of UOB 0 

• Strategic Brief 

• Employers Information Requirements (EIR): managerial, commercial, technical 

• Team Appointments: Architect/Lead Designer, Landscape Architect/Ecologist, MEP engineer, Structural 

Engineer, Civil engineer, Geotechnical engineer, Transport consultant, Cost consultant, Contractor, Sustainability 

Lead/Consultant, Sustainability engineer, Energy modeller, Lighting engineer, BREEAM/Passivhaus assessor, 

Acoustician, Public Health Consultant, BIM manager/Coordinator. 

• Project Objectives: BREEAM, Passivhaus, Overheating, Construction Design Management, Client approval, 

Function, Insurance, Building regulations, Planning and Heritage, Lifecycle Cost, Local Sourcing. 

• Sustainability Aspirations: low embodied carbon and material reuse, energy use and renewable sources, 

greenhouse gas emissions, daylight performance and efficient solar shading, natural ventilation, robustness to climate 

change, innovation, functionality and flexibility, disabled access, thermal mass. 

Level 2 Decomposition 

 

 

Outputs of UOB 1 

• BIM Execution Plan: description of the project; project directory; contractual tree; design responsibility 

matrix and information exchanges; project programme; technology strategy (software, hardware, and training); 

communication strategy (meetings, types of meetings, queries, data exchanges, format, and transfer mechanisms); 

common standards; CAD/BIM manual (coordination strategy, standards, coordination, collaborative process, reviews 

and quality control); and change control procedures.  

• Schedule of Services 

• Sustainability Objectives 

• Sustainability Metrics 

• Feasibility Studies 

• Initial Project Brief 
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Information Requirements (IR) 

Level 3 Decomposition 

 

Inputs of UOB 2.0 

• Location: latitude 

• Orientation: magnetic declination 

• Sun angle: clock time azimuth and altitude 

• Insolation: direct and diffuse solar radiation (KWh/m²/day), cloud cover, solar radiation diagrams 

• Temperature: average minimum, average maximum per month 

• Rainfall / precipitation: per month 

• Relative Humidity: per cent (based on dew point) 

• Wind analysis: speed (m/s), temperature, direction and frequency for each month or season 

Outputs of UOB 2.0 

• Psychrometric Chart illustrating comfort zones 

• Design Guidelines of passive design strategies 

 

Level 3 Decomposition 

 

Inputs of UOBs 2.1.1 – 2.1.6 

• Schedule: number of people, days of occupancy per month, hours a day of occupancy, type of activity per 

room 

• Heat analysis: comfort zone (air temperature, air velocity, humidity) mean radiant temperature, heat balance 

model, comfort equations, adaptive theory principle 

• Climate data: sun angle, temperature, diffuse and direct solar radiation, rainfall, humidity, wind speed, 

temperature and direction 

Outputs of UOB 2.1.1/ Inputs of UOBs 2.1.2 – 2.1.6 

• Massing: rotation of orientation and  analysis of building forms 

• Properties: insulation (R-Value, U-Value) 

Outputs of UOBs 2.1.2-2.1.6 

• Cast shadows for selected hour ranges at specific days of the year (typically solstices and equinoxes) 

• Diagram of heating and cooling loads for building rotations (0 to 90 degrees) 

• Insolation values (KWh/m²/day) on selected planes (e.g. walls, roofs, site) 

• Heating and cooling loads: kWh/m² 

 

Level 3 Decomposition 

 

Outputs of UOBs 2.2.1 – 2.2.3 

• Climate data: sun angle, temperature, diffuse and direct solar radiation, rainfall, humidity, wind speed, 

temperature and direction 

• Site analysis: site elements and qualities, topography, surroundings (e.g. masses, materials) 

• Schedule: number of people, days of occupancy per month, hours a day of occupancy, type of activity per 

room 

• Heat analysis: comfort zone (air temperature, air velocity, humidity) mean radiant temperature, heat balance 

model, comfort equations, adaptive theory principle 

• Sound: decibel (dB)  levels and quality vary per room requirements, environmental noise prevention and 

elimination 

• Massing: rotation of orientation and  analysis of building forms 

• Materials: embodied energy, thermal properties, glazing properties, reflection values, lifecycle carbon analysis 

• Elements’ properties (walls, ceilings, floors, roofs, partitions): insulation (R-Value, U-Value), thermal lag 

(hours), solar absorption (0-1), colour reflection (0-1), emissivity 

• Glazing: size, location, shape, U-Value, SHGC (Solar Heat Gain Coefficient), VLT (Visual Light 

Transmittance), LSG (Light to Solar Gain Ratio), shading coefficient (0-1), transparency, emissivity, colour reflection 

Outputs of UOB 2.2.4-2.2.9 

• Daylighting analysis: DF (Daylight Factor) percentage, overshadowing, (DA) Daylight Autonomy (lux), 

colour temperature, solar shading control or illuminance pattern, glare, visibility, reflections 

• Natural ventilation: CFD (Computational Fluid Dynamics) analysis, mean wind velocity (m/s), atmospheric 

boundary layer (height), turbulence, infiltration, indoor air quality 
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Information Requirements (IR) 

• Heating hours, heating and Cooling loads: (KWh/m²) 

• Insolation values (KWh/m²/day) on selected planes (e.g. walls, roofs, site), overheating, passive solar heat, 

solar radiation 

• Structural analysis: frame sizing, windows and doors bracings, embodied carbon and thermal mass/lag(hours) 

of structural materials 

• Sound analysis: (wave analysis initial time delay gap (ITDG), reverberation time, Early decay time (EDT), 

sound rays distribution 

 

Level 3 Decomposition 

 

Outputs of UOB 2.3.1 – 2.3.4 

• Geometry: plant/s location and sizing, ducts’ location and routes 

• Renewable systems: average daily output, energy losses 

• Lighting: (CCT) correlated colour temperature(K), colour rendering, colour constancy, uniformity, diversity, 

luminous efficacy, luminaire, lamps (photometrics), Part L (W/m² per 100 lux loads), controls, lumen calculation 

• Heating and cooling: HVAC (heating, ventilation, and air conditioning), convection heat, radiant heat, radiant 

cooling, convection cooling, exergy, heat pumps, electric heating, Gas/oil/LPG fired indirect systems (boilers), 

Combined Heat and Power (CHP), Coefficient of Performance (COP), latent loads 

• Ventilation: mechanical or hybrid, volumetric flow, mass flow, fresh air ventilation requirement, ventilation 

rate, air quality, energy recovery, air filtration, ventilation effectiveness (ve) 

• Water: Domestic Hot Water (DHW), hot and cold water(l/person), resistance flow, pumps, sterilisation, water 

harvesting, efficient equipment, greywater reuse, onsite water treatment, schedules, commission, operation and 

maintenance 

Outputs of UOB 2.3.6 – 2.3.11 

• Energy consumption (Wh/m²/yr) for heating, cold water, electrical load, IT and small power 

• Carbon emissions (CO₂/m²/yr) 

• Part L compliance (2013, 2016, 2019), Display Energy Certificate (DEC) rating (A, B, C, D) 

• Water consumption (m³/person/yr) 

Outputs of UOB 2.3.12 

• Coordinated BIM LOD200 model and information requirements 

 

Level 3 Decomposition 

 

Inputs of 2.4 

UOB’s 2.3 Outputs 

 

Outputs of UOB 2.4.13 

• Capital expenditures  (Capex): overall construction, material cost, components cost 

• Operating expenses (Opex): operational cost, energy cost, energy savings 

• Lifecycle cost: Standardised Method of Life Cycle Costing (RICS) 
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Table 6 Roles and responsibilities for sustainable building design  

 Client/Client Adviser: Selection of site; commissioning; consultation with stakeholders; possibility 

of shared facilities; security; proximity to amenities and public transport; responsible sourcing of 

materials; maximum car parking efficiency; energy efficient equipment. 

 Architect/Lead Designer: Site investigation; shared facilities; security; amenities; recyclable waste; 

daylight; view out; glare control; building fabric performance and infiltration; material 

specification; re-use of building fabric and structure; responsible sourcing of materials; insulation; 

daylighting; hard landscaping. 

 Landscape Architect/Ecologist: Site investigation; ecological value protection; re-use of land; 

enhancing ecology; outdoor space; hard landscaping, and boundary protection. 

 MEP Engineer: Site investigation; community energy supply; low and zero carbon technologies; 

daylighting; internal and external lighting levels; lighting zones and controls; potential for natural 

ventilation; indoor air quality; thermal comfort; thermal zoning; reduction of CO₂ (carbon dioxide) 

emissions; building fabric performance and infiltration; free cooling; water consumption; NOx 

(nitric oxide and nitrogen dioxide) emissions. 

 Structural Engineer: Site investigation; re-use of building façade and structure; recycled aggregates. 

 Civil Engineer: Site investigation; water management; irrigation systems; flood risk. 

 Geotechnical Engineer: Site investigation; re-use of land; contaminated land. 

 Transport consultant: Site investigation; provision of public transport; travel plan; maximum car 

park capacity. 

 Cost Consultant: Capex (capital expenditure); Opex (operational expenditure); Lifecycle cost 

assessment. 

 Contractor: Site investigation; construction site impacts; CCS (considerate contractors) compliance; 

construction site waste management; construction waste management. 

 Sustainability Lead/Consultant: Site investigation; sustainability briefing; client consultation; 

developing schemes for the potential building; coordinating different stakeholders; providing advice 

regarding  material specifications, saving water and energy; social and environmental impact. 

 Sustainability Engineer/Energy Modeller: Energy performance of a building; modelling buildings 

using thermal models, detailed simulation tools [e.g. CFD (Computational fluid dynamics)], 

detailed lighting; environmental impact. 
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 Lighting Engineer: daylight analysis assessment; design and implementation of artificial lighting 

arrangements. 

 BREEAM/Passivhaus Assessor: Client consultation; follow the BREEAM/Passivhaus routes, 

planning statements; coordinating different stakeholders; assess evidence from the design team; 

providing advice; getting the certificate. 

 Acoustician: Site investigation; noise attenuation; inside acoustic performance. 

 Public Health Consultant: Site investigation; flood risk; water recycling; irrigation systems; 

watercourse pollution. 

 BIM Manager/Coordinator: Develop BIM strategy; assist the team with software selection and 

interoperability; determine information exchanges; develop BEP; coordinate BIM models and 

information (4D, 5D); review model and detect clashes; report clashes; resolve areas of uncertainty 

in the model; general overview that the BEP is followed as planned. 
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Table 7 Delivery of information during stage 2 (concept design) 

UOB WHY WHO WHAT HOW 

Perform 

climate and 

weather 
analysis 

(UOB 2.0)  

Climatic conditions are critical for building 

performance analysis. Analysing the local 

climate results in identifying the appropriate 
design strategies that can be implemented for a 

specific location. 

This role needs to have the ability to understand 

weather data diagrams (e.g. temperature, humidity, 

solar radiation, wind roses) and interpret the results 
presented in a psychrometric chart (comfort zones) to 

determine the most appropriate design strategies for the 

site. This task is undertaken by the Sustainability 
Engineer, or the Sustainability Consultant. 

Weather data comes from physical weather stations, 

which are situated at large airports and are less 

accurate. Such weather files can be downloaded from 
the US Department of Energy (DOE). Data that are 

more accurate can be generated by Meteonorm 

software, which combines data from various weather 
stations that surround the site. The output of this 

analysis is the passive design strategies (Design 

Guidelines) that can be implemented to extend the 
comfort zones within the building.  

 

 

Open-source software is available for this purpose 

(e.g. Climate Consultant). Furthermore, several 

BPA software offers these capabilities such as IES 
VE, Sefaira, and EcoDesigner. The user imports 

the Climate Data file in the software, selects the 

Comfort Zone model of their preference (e.g. 
ASHRAE Standard 55 and Current Handbook of 

Fundamentals Model, ASHRAE Handbook of 

Fundamentals Comfort Model up through 2005, 
Adaptive Comfort Model in ASHRAE Standard 

55-2010), and the Passive Design Strategies that 

are to be examined.  

Develop 

building 

massing 
(UOB 2.1) 

Massing of the building is deciding the size and 

shape (e.g. height, footprint). The target is to 

minimise energy requirements by reducing the 
heating and cooling loads required while 

maximising passive cooling (natural 

ventilation), passive heating (direct solar 
radiation), and daylight (diffuse solar radiation). 

The shape, orientation, and location of the 

building on site are the critical decisions of this 
task. Sun and shadow studies (UOB 2.1.3) 

reveal the availability of daylight for and the 

impact of topography and surrounding buildings 
the Right to Light Act (1959) needs to be 

considered. The building height needs to cause 

minimal disruption to the surrounding buildings 
and comply with the Local Authorities 

requirements (UOB 2.1.1). Solar radiation 

analysis (UOB 2.1.5) determines the availability 
of sun beams that can be utilised for passive 

heating strategies and renewable energy 

generation (e.g. photovoltaics).  

This responsibility is undertaken by the Architect, who 

is responsible for the design development. In order to 

perform this task, they need to have an understanding of 
the sustainability principles (e.g. heuristics, rules of 

thumb) so as to potentially achieve fewer iterations. 

Manipulation of 3D authoring tools and the ability to 
interpret the environmental analysis results is also 

required. An in-house Sustainability specialist could 

perform the BPA at this stage. If such a specialist is not 
a part of the architectural design team, they would need 

to work closely with a Sustainability Consultant or a 

Sustainability Engineer who can provide advice. 

The climate data, occupancy schedule and comfort 

levels, site location and topography, and the 

sustainability metrics need to be available before 
initiating building the massing model. In the case of 

an informed Architect, the output is an optimised 

building mass 3D model. If a Sustainability Engineer 
is required, PDF reports are provided to the Architect 

until both parties, and the Client reach an agreement 

(J4).  
 

 

Building massing can be done in Revit, 

ArchiCAD, Rhino or SketchUp. Revit software 

has built-in capabilities for performing UOBs 2.12 
to 2.1.5. A knowledgeable Architect can utilise 

these tools to make informed decisions regarding 

the building massing. Furthermore, Sefaira 
software’s plug-ins can be utilised with Revit or 

SketchUp. If a Sustainability Engineer is required, 

the analysis can take place in IES VE software, 
which also provides more accuracy.  The 

optimisation of the building’s orientation (UOB 

2.1.4) is achieved by rotating the building axis 
from 0 to 90 degrees and simulating the heating 

and cooling loads that are achieved for each 

orientation. This technique is part of the 
Sensitivity Analysis method described in Ternoey 

et al. (1985). The final optimised BIM Arch model 

(LOD100) is issued in the CDE (e.g. 4Projects, 
BIW by Conject, aconex, BOX). The preliminary 

outline design needs to be approved by the Client 

before the decisions are frozen. If the Client does 
not approve the proposal, the process iterates to 

UOB 2.1.1. 
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UOB WHY WHO WHAT HOW 

Optimise 

fabric and 
layout (UOB 

2.2) 

The targets at this stage are to optimise the 

fabric performance by utilising passive design 
strategies (e.g. daylight autonomy, solar gains, 

natural ventilation, thermal mass effects and 

night cooling). This would result in minimising 
energy requirements and promoting human 

comfort and health inside the building. 

The Architect, who is responsible for authoring the 

BIM model (LOD200), should have the ability to 
manipulate a 3D model, along with the experience in 

construction methods and means. The Sustainability 

Engineer role must have the ability to navigate, 
manipulate and review a 3D BIM model. Furthermore, 

they need to have a good knowledge of environmental 

design principles, material properties and specifications, 
and building regulations regarding the sustainability 

measures’ implementation. The Structural Engineer 

sizes the structural elements and assesses their 
performance. 

Table 5 contains the information requirements to 

perform the tasks of UOB 2.2. The first row shows 
the information that should be contained at the BIM 

Arch LOD200 model submitted to the Sustainability 

Engineer for analysis. The outputs of the performance 
analysis (rows 2-6), should be interpreted and 

explained in a PDF report or PowerPoint presentation 

that contain recommendations and advice for the 
design team. The outputs of the structural analysis are 

a BIM Struct LOD200 model and a report.  

 

The Architect must utilise a BIM authoring tool 

such as Revit, ArchiCAD, or Microstation to 
develop the BIM LOD200 model containing the 

fabric information. The model should be uploaded 

in the CDE in an IFC or gbXML format. Each 
space/room must be designed as a single thermal 

zone that contains the occupancy requirements and 

the properties of its elements. If there is an in-
house Sustainability specialist, tools such as 

Sefaira and EcoDesigner offer reliable results, 

although not accredited. For accurate results, 
which comply with the building regulations, an 

accredited software package such as IES VE, 

Hevacomp, TAS, and DesignBuilder must be 
utilised. The Sustainability Engineer should 

upload the performance analysis report in the 

CDE. The Structural Engineer utilises Revit for 
early structural design and analysis.  When the 

design solution is approved by the Client, the 

Architect, Structural and the Sustainability 
Engineer, the BIM Arch LOD200 model is 

optimised and the design can progress to the next 

stage.  
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UOB WHY WHO WHAT HOW 

Configure 

mechanical 
services 

(UOB 2.3) 

The sustainability intent at this stage is to the 

selection of efficient services that require the 
minimal amount of energy, while delivering the 

heating and cooling loads required. 

Furthermore, the use of clean energy sources 
from renewables (e.g. sun, wind) is preferred to 

conventional sources (e.g. petrol). The sizing of 

the plant rooms, ducts, and their routes are 
important considerations at this stage. 

Compliance with Part L of the Building 

Regulations is a mandatory requirement. 

The MEP Engineer is authoring the services model, 

identifying the size and location of the plant rooms and 
the duct sizes and routes within the building. The ability 

to manipulate, review and author 3D BIM models is 

needed. The Sustainability Engineer should be able to 
review the 3D BIM model, author a 3D model in 

dynamic simulation software (e.g. IES VE, Hevacomp, 

TAS), perform the analysis, and interpret the results. 
The BIM coordinator should be able to manipulate 3D 

models and identify the constructability of the design. 

Good knowledge of building systems is required to 
identify the clashes and resolve the issues.  

The outputs of UOB 2.2 (Table 5) are required for 

performing UOB 2.3.1 to 2.3.4. To determine the 
energy sources (UOB 2.3.1), site information analysis 

is required regarding their availability on or close to 

the site. To develop the artificial lighting strategy 
(UOB 2.3.2), the daylight autonomy needs to be 

determined first (2.2.4). The target illuminance levels, 

lighting zones of artificial lighting, their controls, and 
the selection of lamps are the outcomes of UOB 

2.3.2. (CIBSE Guide L and CIBSE Guide SLL). The 

sizing of HVAC systems responds to the heating and 
cooling loads, identified in UOB 2.2.6 (CIBSE Guide 

B). The outputs of UOB 2.3.5 are identifying the 

location of the plant room/s, estimating the sizing and 
routes of ductwork. The selection of efficient HVAC 

equipment is the main consideration of UOB 2.3.1 to 

2.3.5 (CIBSE Guide F). The thermal loads/heat gains 
as well as the energy consumption of IT, small 

equipment, and lighting should be assessed explicitly 

in order to make realistic estimations. Water systems 
strategies (e.g. water harvesting, water recycling) 

need to be considered at this stage (UOB 2.3.4).Table 

5 shows the information requirements for UOB 2.3 
tasks. It is recommended not to oversize the plant due 

to peak heating and cooling loads. Localised solutions 

may be implemented instead for specific times, when 
required. The BIM Arch, Struct, and MEP LOD200 

models are required to perform the coordination 

exercise (UOB 2.3.12). The output of UOB 2.3.12 is 

a coordinated BIM LOD200 model with the 

information attached. 

The MEP Engineers utilises Revit, AECOSim, 

CAD Duct, or other 3D authoring tools to create 
the BIM LOD200 model (UOB 2.3.1-2.3.4). The 

functions of UOB 2.3.6, 2.3.8, and 2.3.9 may 

occur concurrently in Revit utilising the cloud-
based facility for early design calculations. For 

more accuracy, UOB 2.3.6 to 2.3.11 can be 

assessed in IES VE software. The BIM MEP 
LOD200 model, along with the analysis report are 

uploaded in the CDE. The coordination of the 

Arch, Struct, and MEP BIM models requires the 
use of coordination software tools such as 

Navisworks and Solibri. The former is considered 

simpler in use, while the latter offers extended 
capabilities. 
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UOB WHY WHO WHAT HOW 

Develop 

holistic 
concept 

(UOB 2.4) 

The optimisation of concept design occurs by 

assessing the trade-offs of design solutions 
while assessing the implications on 

environmental performance and cost. 

The Client, Architect, MEP Engineer, Structural 

Engineer, Sustainability Engineer, and Cost 
Consultant/Contractor work collectively in a holistic 

iterative process. 

The information requirements of Table 5 are 

manipulated to reach LOD200. The outcome of the 
UOB 2.4 is a Federated Model consisting of 

component models (Arch, Struct, MEP), drawings 

derived from the models, and data sources. A cost 
estimation report (Table 5), and a BREEAM design 

stage pre-assessment (J17) are also required. 

An iterative process of developing, 

analysing/assessing, and reviewing the individual 
proposals until a consensus is reached between the 

project team members. The working methods for 

UOB 2.4.1 to 2.4.5 resemble the ones of UOB 2.1 
to 2.3. For assessing UOB 2.4.6 - 2.4.12, dynamic 

simulation analysis is required for accurate results 

before freezing the design solutions. For that 
purpose, accredited simulation software (e.g. IES 

VE, TAS, Hevacomp, and DesignBuilder) should 

be utilised before committing to decisions. Revit 
performs early cost analysis but dynamic cost 

modelling in Excel or specialised software is 

recommended (e.g. TurboBid Estimating, HCSS 
HeavyBid, Viewpoint MEP Estimating, B2W 

Estimate - Estimating and Bidding, 

ProContractor™ by Viewpoint). The documents 
for BREEAM pre-assessment are uploaded in 

Tracker Plus or IES TaP. 
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Figures 

Figure 1 Overview of the research design 

Figure 2 BIM-enabled SBD process framework 

Figure 3 Interoperability between BIM Authoring tools and Dynamic Simulation Accredited Software 

Figure 4 Sustainability considerations aligned with the RIBA Plan of Work 2013 

Figure 5 IDEF process model master-map showing hierarchical relationships between processes and sub-

processes (see Table 4 for detailed decompositions)



50 

 

 

 

 

 

Figure 1 Overview of the research design 
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Figure 2 BIM-enabled SBD process framework 
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Figure 3 Interoperability between BIM Authoring tools and Dynamic Simulation Accredited Software 
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Figure 4 Sustainability considerations aligned with the RIBA Plan of Work 2013 
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Figure 5 IDEF process model master-map showing hierarchical relationships between processes and sub-processes (see Table 4 for detailed decompositions) 


