
 1

Abstract—Trading-Card-Games are an interesting problem

domain for Game AI, as they feature some challenges, such as

highly variable game mechanics, that are not encountered in this

intensity in many other genres. We present an expert system

forming a player-level AI for the digital Trading-Card-Game

Hearthstone. The bot uses a symbolic approach with a semantic

structure, acting as an ontology, to represent both static

descriptions of the game mechanics and dynamic game-state

memories. Methods are introduced to reduce the amount of

expert knowledge, such as popular moves or strategies,

represented in the ontology, as the bot should derive such

decisions in a symbolic way from its knowledge base. We narrow

down the problem domain, selecting the relevant aspects for a

play-to-win bot approach and comparing an ontology-driven

approach to other approaches such as machine learning and

case-based reasoning. Upon this basis, we describe how the

semantic structure is linked with the game-state and how

different aspects, such as memories, are encoded. An example

will illustrate how the bot, at runtime, uses rules and queries on

the semantic structure combined with a simple utility system to

do reasoning and strategic planning. Finally, an evaluation is

presented that was conducted by fielding the bot against the

stock “Expert” AI that Hearthstone is shipped with, as well as

Human opponents of various skill levels in order to assess how

well the bot plays. Evaluating how believable the bot reasons is

assessed through a Pseudo-Turing test.

I. INTRODUCTION

“Hearthstone: Heroes of Warcraft”1 (or “Hearthstone” for

short) is a digital Trading-Card-Game (TCG), comparable to

other examples of its genre, such as “Magic: The Gathering”2

or “Android: Netrunner”3. We propose a concept for a player-

level AI playing the full game of Hearthstone. TCGs typically

offer various types of cards, such as minions and spells, which

cost resources to play. Minions battle against the minions of

enemy players to achieve victory. An important aspect of

TCGs – and Hearthstone in particular – is planning on how to

use the available cards and which actions to perform. These

Andreas Stiegler is with the Stuttgart Media University, Nobelstraße 10,

Stuttgart, Germany (e-mail: mail@andreasstiegler.com).

Keshav Dahal is with the University of the West of Scotland, PA1 2BE,

Paisley, UK. He is also affiliated with Nanjing University of Information
Science and Technology (NUIST), China (e-mail: keshav.dahal@uws.ac.uk).

Daniel Livingstone is with the Glasgow School of Arts, G3 6RQ, Glasgow,

UK (e-mail: d.livingstone@gsa.ac.uk).
Johannes Maucher is with the Stuttgart Media University, Nobelstraße 10,

Stuttgart, Germany (e-mail: maucher@hdm-stuttgart.de).

1 Blizzard Entertainment, 2014 (http://us.battle.net/hearthstone/en/)
2 Wizards of the Coast, 1993 (http://magic.wizards.com/en)
3 Fantasy Flight Games, 2012 (http://www.fantasyflightgames.com/

edge_minisite.asp?eidm=207)

planning aspects and the reasoning systems required for it are

focus of our research.

A lot of reasoning and planning research is currently

conducted for Real-Time-Strategy (RTS) games, such as

“StarCraft”4, as analyzed by Ontanón et al [1]. Reasoning and

planning in games, RTS games in particular, was promoted as

an interesting research problem by Buro [2, 3] and by many

researchers since then [4]. In Hearthstone, as in RTS games, a

lot of short and long term planning has to be done. RTS bots

are typically split into micro- and macro-management, dealing

with individual units or the large scale battle plan respectively.

The move selection in Hearthstone is arguably of similar

complexity to typical planning tasks in RTS. Selecting which

card to play or selecting which unit to produce might be a

similar problem. Yet, Hearthstone has some preferable

properties for developing game AI, in contrast to an RTS.

Hearthstone is non-spatial, as the position of cards are only

discrete slots, not a continuous map. This allows the AI to skip

micro-management altogether, focusing on the strategic and

tactical reasoning of playing cards. Further, Hearthstone is

static, so the game-state is not changing while the reasoning

process runs, while still offering typical game AI planning

challenges, such as being adversarial, partially observable and

having temporal constraints on actions. The TCG game

domain, however, comes with some interesting challenges.

Uncertainty, for example, is of a different flavor in TCGs than

in RTS games. In RTS games, partial information usually

originates from not being able to perfectly observe the enemy.

However, each game session consists of the same game

entities, making guessing a good option. There are only so

many openings a player can perform in an RTS and once a

certain building was scouted, it is reasonable to infer the

strategy behind the current enemy build. In TCGs, however, it

is even uncertain which game entities – which cards – the

enemy player might be using. There are certain baseline cards

that can be expected, but in general guessing is harder in

TCGs. In Hearthstone, a player’s deck consists of 30 cards of

a card pool of over a thousand and of the 30 cards, many will

be duplicates. A player in a TCG game session only uses a

tiny bit of the game’s mechanics to deploy their strategy,

whereas other domains, like RTS, utilize a large portion of

their game mechanics in every single game.

Further, the impact of synergies and interactions between

game mechanics has more impact on the flow of the game. In

TCGs, it is not uncommon for a single card to gain a greatly

increased amount of value out of it when synergizing it with

4 Blizzard Entertainment, 1998 (http://us.blizzard.com/en-us/games/sc/)

Symbolic Reasoning for Hearthstone

Andreas Stiegler, Member, IEEE, Keshav Dahal, Senior Member, IEEE,

Johannes Maucher, Member, IEEE, and Daniel Livingstone, Member, IEEE

 2

other cards. A minion could get 10 times the attack and health

values if used correctly. Synergies also appear in other game

domains, but in TCGs they are particularly escalating. This

often goes hand in hand with the tendency of TCGs to alter

their game mechanics at runtime. The rules by which attacks

or spells work may be altered by other cards, allowing creative

synergies and combos.

Due to these properties, TCGs are already used in academic

work, such as using Monte Carlo Tree Search to cover

uncertainty [5] or card selection [6]. Other work, such as

HoningStone [7], focuses on the creative aspects of selecting

card combos. Mahlmann et al [19] introduce the deck-building

card game “Dominion”5 as a testbed to construct interesting

decks. Although RTS research saw a far greater variety of

approaches deployed, we want to propose TCGs as a testbed

for the higher-level planning problems, which are often hard

to work on in RTS games, as they typically tie towards micro-

management, thus requiring a multi-agent approach to cover

all the aspects of a full RTS: If the underlying micro-

management is not solved sufficiently well, higher-level

planning will be limited, too. As described in [1], all academic

StarCraft bots in the respective challenges used a multi-agent

structure of some kind, typically splitting the reasoning task

into higher-level planning and lower-level micro-management

problems. Churchill, one of the developers of the TCG and

RTS hybrid “Prismata”6, dissects the architecture of their

TCG-AI in [8] and also illustrates the challenges.

TCGs also share some similarities with other card games,

such as Contract Bridge. Similar to TCGs, a player’s available

game entities, their hand, are note observable by others. Buro,

Long and Furtak [24, 25] demonstrated a Monte Carlo

approach for Skat and, along with the Perfect Information

Monte Carlo approach of Ginsberg and Long et al. [23], both

solutions are now considered expert-caliber players, as Long

[26] reports. Thus, Monte Carlo Tree Search seems like a

good candidate to be applied to TCGs, but wasn’t yet able to

replicate the success.

Reasoning problems similar to those found in Hearthstone

are already solved via other approaches, most dominantly

Machine Learning (ML), Case-Based-Reasoning (CBR), and

Monte Carlo Tree Search (MCTS). The TCG game domain,

however, is an example of game domains with some

interesting properties: their tendency to alter game mechanics

and even basic rules of the game at runtime, a complex action

space including many seemingly suicidal actions and a high

degree of synergies between individual game elements. Our

hypothesis is that for this game domain – and perhaps similar

ones – a symbolic AI can produce a good player-level AI

playing to win the game. Here, we define a player-level AI as

“good” if it is capable of playing effective – thus winning

games against various opponents – and believable – producing

strategies that are perceived as natural by human players.

Other common metrics for player-level AI evaluation, such as

runtime performance and controllability, are secondary. This

5 Rio Grande Games, 2008 (http://riograndegames.com/Game/278-

Dominion)
6 Lunarch Studios (http://blog.prismata.net/2014/12/17/the-prismata-ai/)

chapter will briefly highlight ML, CBR and MCTS and gives

some rational why we think a symbolic approach might

perform on a competitive level in this particular game domain.

Chapter II will introduce the knowledge representation for the

proposed symbolic system. Chapter III then explains the actual

reasoning process and Chapter IV gives an example of the

approach in action. The evaluation chapter will compare the

performance of our approach against an MCTS agent, as

MCTS can be considered the good standard in similar game

domains, producing effective reasoning results. The evaluation

will also cover how well the AI plays different classes, plays

against human players of different skill-levels and a pseudo-

Turing test to assess how believable it performs.

A. Machine Learning

A ML approach to Hearthstone could analyze recorded

human games to identify how cost effective individual cards

are. Such a metric could then act as a utility function. A

similar approach to value Hearthstone cards through ML was

presented on the Defcon by Elie Bursztein [9] and is available

on his website7. One could further search for good move

sequences or even identify predominant strategies, such as

classifying the opponent deck early through cards played. For

similar problems in RTS games, such as strategy prediction

where a strategy is a sequence of moves – very similar to a

TCG – there are already some applications with promising

results, such as the work done by Weber [10] or Wender [11].

Such ML approaches are effective solutions that often do most

of their processing at development time and thus have very

good runtime complexity. ML approaches might, however,

encounter some challenges in game domains where the

underlying mechanics and entities change frequently – such as

in Hearthstone: A single card can turn all healing into damage

or swap the attack and defense of all minions. If such

fundamental rules of the game can change frequently, that

makes modelling an actual game-state or strategic decision for

a ML approach difficult.

B. Case-Based Reasoning

CBR approaches, on the other hand, put a database of

recorded situations at their heart. These situations are often in

a more abstract format and offer abstraction and concretization

methods to move from a current game-state into the abstract

domain of the database, perform a search for the most similar

cases, and then concretize the actions performed in the

recorded cases back to the current game-state. Looking again

at similar planning problems in the RTS domain, we see

solutions for selecting proper action sequences in tactical

reasoning, such as the work done by Cadena [12] or even

whole build orders such as the approach by Weber [13].

Particularly the concretization step in CBR, moving from an

abstract action performed in a case to a concrete action

available in the current action space is a vulnerable point of

CBR approaches, in particular when the action space of a

game is highly variable. This will lead to situations where

cases very close to the current game-state were found, but the

7 https://www.elie.net/hearthstone/card_analysis

 3

actions that lead to victory in those cases are not available in

the current action space. This is particularly probable for

TCGs, as the majority of their action space – the cards in a

player’s hand – is randomly selected.

C. Monte Carlo Tree Search

A particular well-researched category of reasoning and

planning algorithms in games are tree-based approaches. They

build on forward-modelling future game states and action

spaces to arrive at a tree describing how the future of the game

may evolve. On this tree, a search algorithm can now operate

to find a move that pushes the overall expected future of the

game into a favorable direction. The original version of these

approaches became popular as soon as the 90s, such as the

book by Allis [20] with many examples from physical turn-

based games such as Chess or Go. In terms of digital games,

tree-search saw many applications, but wasn’t yet able to

solve the high-level planning problems of a player-level AI in

complex game genres, as Robertson and Watson [21]

summarize for the RTS game domain. Recent research focuses

more on Monte Carlo versions of game tree search, which

solve constructing and expanding the tree in a stochastically

sampled manner. Browne et al [22] give a good overview on

the applications and current state of Monte Carlo Tree Search

as of the year 2012. In general, the TCG game domain is

suited for the application of tree based reasoning approaches:

they are turn-based and thus temporally discrete, offering a

clear way on how to map the causality of a game onto a tree.

Further, they are often spatially discrete and have less

complex overall game states compared to other tactical games

such as RTS. In the Hearthstone reddit8, there is a report of a

MCTS implementation for Hearthstone, though with some

limitations such as having perfect knowledge. In the broader

scope of TCGs, there is also work on using MCTS by Ward et

al [6] for a simplified version of “Magic: The Gathering” only

allowing minion cards and a greatly reduced card pool. In their

work, they illustrate a common approach, the bandit-based

MCTS implementing an Upper Confidence Bound (UCB or

UCT if applied to trees). They evaluate several combinations

of using rule-based, random and Monte Carlo approaches for

the different tasks in their minimalized TCG version (Attack,

Blocking, Playing Cards) where the best result was produced

by a rule-based attacker and blocker using MCTS for playing

cards.

However, there are also some challenges in the TCG

domain. In general, TCGs have a relatively large branching

factor and a huge variety in actions. Knowledge about the

hostile hand is usually inaccessible and thus there is a strong

factor of uncertainty. With card pools of several hundreds or

even thousands, this leads to a huge variety in the potential

action space for the same game state, leading to an explosion

in branching factors for TCGs, as Cowling et al [5] found. A

common technique for MCTS approaches in situations with

uncertainty is reducing the problem to a perfect information

game through determinization. Cowling et al [5] detail such an

8 https://www.reddit.com/r/hearthstone/comments/3zdibn/

intelligent_agents_for_hearthstone/

approach for “Magic: The Gathering”. In TCGs, the key

stochastic element is usually drawing a card from the player’s

decks. A determinization strategy could create fixed deck lists

and then span of a MCTS tree using a deck list to determinize

all otherwise stochastic card draws. In their comparison of

several different MCTS players, the naive UCT

implementation scored worst with a win rate of 26% at most,

whereas determinization-bots scored far better, in particular

when using a binary MCTS tree (in which each node

represents the decision whether to execute a specific action or

not) compared to the otherwise common n-degree trees (in

which each node represents the decision which of the available

actions to execute). Besides the huge branching factor, another

challenge of the TCG domain is more subtile. The action

spaces of TCGs are usually “polluted” with actions that are

suicidal in many situations: it is allowed by the rules of these

games to use cards in seemingly awkward ways, such as

killing one’s own minions with a fireball or even casting the

fireball at a player’s own hero. This would be similar to an

FPS allowing a player to shoot themselves with their guns.

However, these seemingly suicidal actions exist for a reason.

There are often opportunities to combine cards and effects in

creative ways exploiting such actions. A popular example

from Hearthstone is playing the minion “Sylvanas

Windrunner” and then immediately destroying her with a

spell. When “Sylvanas Windrunner” dies, she takes over a

random enemy minion. Thus, a combination evolving around

the seemingly suicidal action of killing one’s own minion can

be a powerful way to steal a particular threat the enemy

deployed. In a MCTS simulation with a random simulation

policy, however, many of these actions will be played in

situations where they are truly suicidal. One could filter them,

but that could render a bot less able to use many of the

powerful combinations and moves they offer. The tendency of

the TCG game domain to alter the rules and mechanics of the

game during a game session renders pruning actions harder, as

it is more difficult to assess at development time whether

actions should be pruned or not. Taking a closer look at

Hearthstone, its game domain offers another interesting

property: a given situation might not have a significant impact

on the end of the game. Hearthstone contains many cards that

allow to completely change the game state with just a single

move, such as cards like “Twisting Nether” that kills all

minions on the board, or “Reno Jackson” that heals all damage

inflicted to a hero, or even “Renounce Darkness” that allows a

Warlock to omit all their Warlock-specific cards and replace

them with some from another class, effectively switching a

player’s hero class during the course of a game session. Thus,

the MCTS simulation, effectively searching for a path from

the current state to a victory state, might not take these game-

changer cards into account or a random-player simulation

might imagine them too often. Due to its good results solving

many planning problems in TCGs and related game domains,

we chose an MCTS implementation as a measurement to

ground the performance of a symbolic system. Details can be

found in the evaluation chapter below.

 4

D. Symbolic Expert Systems

As Hearthstone is an example of a game domain with both

highly variable game mechanics and an unforeseeable action

space, we were interested whether other approaches can

perform well. We opted to put an expert system using an

ontology in the form of a semantic structure at the heart of our

bot. During development, a key element in improving the

performance of the bot was to tailor and design what kind of

information is stored in which part of the semantic structure.

Hereby we differentiate between several categories of

knowledge: memories, domain knowledge and expert

knowledge. Memories are the representation of the current

state in which the game is and how we got there. Domain

Knowledge is any objective information that describes the

problem domain, such as the rules and mechanics of

Hearthstone, whereas expert knowledge is information about

the meta-game, such as how valuable certain cards are or

which combos are dominant in strategies, which is often

derived from long-term experience. However, we try to

minimize the usage of expert knowledge, such as storing

which cards offer synergies or which move sequences may

form popular strategies. This decision allowed us a relatively

cheap expansion of the bot to include new cards and features,

as most of the reasoning is built upon Domain Knowledge and

Memories which both don’t require tremendous amounts of

data mining or test games to get. Only the Memories and

Domain Knowledge are stored directly in the Knowledge

Base, whereas expert knowledge plays a role in the production

rules as described below.

II. DYNAMIC AND STATIC KNOWLEDGE

The heart of our bot is the ontology, the knowledge base

which represents the state of the world and any further

knowledge for the reasoning process. The knowledge base of

the bot is organized in two primary segments: Static and

Dynamic Knowledge. Static Knowledge is knowledge with

which the bot is initialized, for example containing knowledge

on which cards there are, how their effects work, what the

rules of the game are etc. Static Knowledge represents generic

information on the game that’s not specific to a game session.

The Static Knowledge merely describes the objective domain

knowledge – the rules and mechanics of the game – just as a

human could find them in a manual or Wikipedia. The Static

Knowledge is authored manually and covers all recent cards

and game mechanics up to the “Whispers of the Old Gods”

expansion pack (“One Night in Karazhan” was not yet

released when this paper was written).

Dynamic knowledge, in contrast, describes the entities

which are currently active in a game session and thus the

memory of the bot. While the Static Knowledge, for example,

would encode that there is an “Auchenai Soulpriest” card,

which is a minion with 3 attack and 5 health that turns healing

abilities into damage, the Dynamic Knowledge would encode

that there is one “Minion #17” in the current game session,

that’s an instance of “Auchenai Soulpriest” and has 3 health

remaining. Both knowledge bases are represented in a single

semantic net using a simplified format similar as described in

[14]. Such a net consist of a list of nodes, a list of relations,

and a list of attributes.

Nodes typically represent entities or concepts of the game

world, such as “Card” or “Health”. In some ontology formats,

nodes can carry attributes to define further aspects of the

represented concept, for example having a “cost” attribute to a

node that represents a building. After some experimentation,

we omitted node-attributes and instead stored such

information entirely through relations, which still can have

attributes. This leaves nodes to only having checks for

identity, whereas most semantics are represented through

relations and their attributes. Omitting node attributes made

the reasoning rules much more simpler and the resulting

ontology was still sufficient to represent the mechanics of

Hearthstone.

Relations form a directed graph spanning over the nodes.

Relations encode semantics between nodes, such as “Auchenai

Soulpriest”-”is_a”-”Minion”, and are the key data structure in

our approach. They can be further decorated with attributes to

add additional information, such as describing that “Auchenai

Soulpriest”-”has:4”-”Cost”.

Figure 1 illustrates how the three basic data types relate to

each other and how they are implemented in the current

version of the bot. The implementation contains three further

tables for human readability, mapping node::ID,

Relation::type and Attribute::type to strings.

Figure 1: Semantic structure data specification, showing all required data
fields.

Queries on the semantic structure now become search

operations in the three datasets, such as answering the

question if “Auchenai Soulpriest” “is_a” “Card” becomes a

search query in the relations list, looking for a path that starts

at the node of “Auchenai Soulpriest”, ends at the node of

“Card” and only uses relations of the type “is_a”. The

approach of putting a large data structure at the heart of the

reasoning process is greatly influenced by the keynote of Jeff

Orkin at the CIG2012 [15], proposing that reasoning systems

for games can become closer to search engines performing

lookups in a vast pool of memories. Our approach represents

domain knowledge and memories in the same data structure,

closely linking them to allow search operations that span over

both, for example to answer the question if “Minion #02”

“has” “Taunt”. “Taunt” is an attribute that certain minions can

have, forcing an opponent to attack them first before they can

inflict damage to the enemy player. As “Taunt” is an attribute

of a specific card, such as “Voidwalker”, the “has” “Taunt”

relation would be part of the Static Knowledge. The node

 5

“Minion #02”, however, is a specific instance of a minion in

this very game session and is therefore part of the current set

of Dynamic Knowledge, but “Minion #02” would have a

“is_a” relation to the Static Knowledge “Voidwalker” node.

Answering the above question now becomes a pathfinding

query, looking for a path between “Minion #02” and “Taunt”,

only using “is_a” and “has” relations. This also covers cases

where an attribute such as “Taunt” can either be a static

property of a card, as in the case detailed above, or where

“Taunt” can be added to a minion through special effects, such

as the Spell “Mark of the Wild”, granting a minion an attack

and health bonus, as well as “Taunt”. In this case, the minion

node would have a dynamic “has” relation to “Taunt”, without

the need to climb up several “is_a” relations to ascend into

Static Knowledge. Figure 2 shows an example of how static

and Dynamic Knowledge are represented in a semantic

structure.

The two fundamental relations in a semantic structure are

abstraction (“is_a”) and aggregation (“has”), with all other

relations (such as “alters”) being shortcuts with hardcoded

semantics. When querying the semantic structure to return an

attribute value there might be multiple, conceptually correct

answers. Figure 2, for example, contains multiple “has”-

“Health” relations, one with an “amount” attribute of 1, one

with 5 and one without any “amount” attribute at all. The

attribute retrieval algorithm, however, always returns the value

of the attribute that is least abstract, thus that required to pass

by as few “is_a” relations as possible. In the example in figure

2, the “Minion”-“has”-“Health” relation requires following

two “is_a” relations from “Minion_013” to be reached, while

the “Minion_013”-“has”-“Health” relation requires none.

Thus, the latter would be the relation from which the attribute

is extracted. The same process is used for all attribute

retrieval.

Figure 2: Excerpt of the semantic net, illustrating the relations between a

Dynamic Knowledge node representing a concrete instance of a minion and

the Static Knowledge related to this minion: A “Minion” just always has
“Health”, an “Auchenai Soulpriest” has 5 base “Health” and the instance

“Minion_013” of the current game session has only 1 “Health” remaining.

The semantic net for Static Knowledge used in the current

version of the bot covers all collectible cards of Hearthstone,

including the expansions that were released after launch up

until “Whispers of the Old Gods”. It contains 2156 nodes,

10954 relations of 19 distinct types and 6384 attributes of 8

distinct types. During a typical game session, the Dynamic

Knowledge allocates ~1200 additional nodes, representing

active minions, the player's hand and knowledge of the enemy,

for example through cards that were returned to an enemy's

hand. These nodes span ~2500 additional dynamic relations to

other dynamic or static nodes and introduce ~900 attributes.

Both static and Dynamic Knowledge can be serialized, of

which a sample is shown in Figure 3.

"Earth Elemental": {

 "relations": [

 {

 "type": "is_a",

 "target": "Minion"

 },

 {

 "type": "has",

 "target": "Cost",

 "attributes": [

 {"type": "amount", "value": 5}

]

 },

 {

 "type": "has",

 "target": "Overload",

 "attributes": [

 {"type": "amount", "value": 3}

]

 },

 {

 "type": "has",

 "target": "Attack",

 "attributes": [

 {"type": "amount", "value": 7}

]

 },

 {

 "type": "has",

 "target": "Health",

 "attributes": [

 {"type": "amount", "value": 8}

]

 },

 {

 "type": "has",

 "target": "Taunt"

 }

]

}

Figure 3: Excerpt of a serialized minion node “Earth Elemental” with its

relations towards more abstract nodes such as “Minion” (superclass) or “Cost”

(component). The strings used as labels for types and targets are translated
into unique IDs when parsed.

At first glance, using a semantic net as a knowledge base

might just look like a glorified look-up where a simple table

would have been sufficient. However, the big benefit of

semantic structures are that it’s possible to describe the

semantics of game mechanics instead of hard-coding them

into the reasoning system of the bot. The “Earth Elemental”

example shown in Figure 3, for example, could also have been

described using fields with fixed semantics, such as a field

“Cost” or “Overload”. In such an AI system, the semantics of

these fields are predetermined through the reasoning

algorithm. One could see that as hard-coding the domain

knowledge about the “Overload” game mechanic into the

reasoning process. An AI system which later-on uses this

field, for example in a cost calculation, would then rely on that

the hard-coded semantics are still the same. While this is a

well-established approach and works well for many game-AI

problems, we argue it is not optimal for situations where the

underlying game mechanics can change. In the case of

Hearthstone, there are many cards which alter the fundamental

 6

rules of the game, such as “Auchenai Soulpriest”, a minion

transforming any source of healing into damage or “Feign

Death” a spell which allows to trigger any “Deathrattle”

effects on minions without having them to die (“Deathrattle”

is an effect which is executed once a minion is destroyed).

Using a semantic network as a knowledge base, game

mechanics such as “Damage” or “Healing” can be further

defined, for example by having “alters” relations towards

“Health”. This way, game mechanics are described into more

and more abstract layers of the Static Knowledge, with only

few nodes remaining for which the bot has to have hard-coded

semantics. “Health”, to spin the example further, has relations

describing it as a “Property” of an “Entity”, both very abstract

concepts which are not directly represented in the game. The

bot only has to consult a set of hard-coded rules, describing

how “Properties” and “Entities” relate to a game-state, and can

infer what all further game mechanics, like what “Attack” or

“Health”, imply from there on. This gives a bot great

flexibility to react on changes in the core game mechanics as

they happen often in TCGs.

A key point of an approach that works with a vast data

structure is how this data structure is created and maintained.

The Static Knowledge bases of the bot are manually created.

While this seems like involving both a lot of effort and the

potential for a bias – leaking in domain knowledge – we found

that the way the knowledge bases are structured is beneficial

for the creation process. The Static Knowledge base is just

describing the rules of the game in an objective way, without

the need of the knowledge base author to think about what a

certain property of an entity actually implies. It only needs to

be described what the properties actually do. In cases where

the AI is developed alongside a game and not a post-release

addon (like the Hearthstone bot we present here), the

description of the game mechanics themselves could already

be used to create a Static Knowledge base automatically. This

requires the Game Mechanics to be in a declarative format,

however, in contrast to the popular approach of covering many

rules of the game in scripting languages such as LUA. We

experimented with such an approach in “Civilization V”9,

where game entities are described via SQL tables. After

creating a small semantic structure that explains what each

column in the SQL tables means, a script was able to generate

the majority of the Static Knowledge automatically. Even

when developing a bot for an existing game which does not

follow a declarative nature, much of the effort of maintaining

the Static Knowledge base can be automated. For the

Hearthstone bot presented in this paper, for example, all basic

card stats are supplied by a crawler, reading the game data and

supplying attack and health values, having a property such as

“Taunt”, costs or other simple numeric values. Only the actual

card texts, which seem to be covered through scripting in

Hearthstone, are then left to be manually added to the

semantic structure.

9 Firaxis Games, 2010 (http://www.civilization5.com/)

III. REASONING PROCESS

While the knowledge base represents domain knowledge

and memories for the bot, it does not yet perform reasoning.

As with many expert systems, a network of rules is put to use.

These rules come in different flavors, depending on whether

they describe goals, game mechanics or expert knowledge.

They all contribute in calculating a utility value for an action,

which is then used in an overarching utility system. As such,

the bot is essentially a simple utility system calculating

utilities for every valid action at a given point of time, where

each utility function is a combination of rules and inferences

working on the knowledge base. This follows the notion of

utility systems as described by Mark and Dill [28] by mapping

objective sensor data onto subjective utilities for respective

actions. Within the utility calculation, there are four important

types of rules involved: Refinement Rules, Goal Rules,

World-State Mappings and Planning Rules.

Algorithmically speaking, there are two points of

interaction between the bot and Hearthstone: any game state

change on Hearthstone will invoke an Update call at the bot,

while a Reasoning call is triggered during the bot’s turn and

is expected to return actions to be executed. For each Update

call, the World-State Mappings adjust dynamic knowledge to

match the Hearthstone game state and all Refinement Rules

are triggered. These guarantee that the bot has a consistent and

correct representation of the Hearthstone game state in

dynamic knowledge. Then, for each Reasoning call, the

currently available action space is constructed. For each

action, World-State Mappings are triggered to populate

Planning Knowledge with a prediction on what the outcome of

the respective action will be. Once completed, Refinement

Rules will run over the Planning Knowledge state to produce a

consistent view of the fictitious outcome. Now, the utility

calculation starts. Planning Rules and Goal Rules are

executed, finding patterns in the Knowledge Base and

returning utility contributions. The final utility of an action in

the action space is then the sum if all Planning Rule and Goal

Rule contributions. The action with the best utility is then

executed and the process starts anew, until the action space is

empty. This chapter will describe each of these four types of

rules in more detail.

A. Refinement Rules

While the Static Knowledge describes some aspects of the

game mechanics, it does not yet grasp the complete

complexity of a game, in particular its dynamics: How events

chain, which action triggers what and how side-effects are

handled. These dynamics are covered via Refinement Rules.

Such a rule only describes domain knowledge, just as the

Static Knowledge does. They have a formal definition

consisting of a Condition and an Operation. The Condition is a

pattern to look for in the knowledge base, and the Operation

then adds, removes or alters relations or attributes. They are

inspired by macros as found in functional languages, such as

LISP, where certain sequences of an abstract syntax tree are

rewritten into different representations to allow higher-level

syntax. Here, Refinement Rules search for patterns in the

 7

knowledge base and rewrite them to express what a certain

constellation actually means. The Refinement Rules are called

whenever a change in the knowledge base happens, such as a

human player doing a move or virtual planning nodes being

spawned.

A typical example would be marking dead minions in the

Dynamic Knowledge. A minion instance is represented by a

node in the Dynamic Knowledge and is considered dead when

its “Health” is 0 or negative. If so, a relation is added that

marks the respective minion to “have” “Death”, on which

other rules can react on. These Refinement Rules are defined

in a declarative way, for example through JSON. An example

of such a Refinement Rule is shown in Figure 4. Its conditions

block describes that the rule matches for “has” relations with

an attribute “amount” in the range of “-inf” to and including 0.

Further, additional conditions for its target and origin node

have to be matched. The target node has to be “Health” and

the origin node has to have a path through “is_a” relations to

“Minion” as well as not having a path through “has” relations

to “Death”. These conditions can be chained recursively to

describe more complex Refinement Rules: the target and

origin blocks could contain additional conditions, to define

that certain relations have to be present. The operation, finally,

just adds a “has” relation between the origin of the “has”-

“Health” relation (which would be the respective minion) and

“Death”.

{

 "conditions": [

 {

 "type": "has",

 "attributes": [

 {"type": "amount",

 "valueMin": "-inf",

 "valueMax": 0}

],

 "target": {

 "name": "Health"

 },

 "origin": {

 "requiredPaths": [

 {

 "allowed": ["is_a"],

 "target": "Minion"

 }

],

 "forbiddenPaths": [

 {

 "allowed": ["has"],

 "target": "Death"

 }

]

 }

 }

],

 "operations": {

 "add": [

 {

 "origin": "this.origin",

 "target": "Death",

 "type": "has"

 }

]

 }

}
Figure 4: Example of a Refinement Rule adding a “has” “Death” relation to

dead minion nodes in the Dynamic Knowledge.

These Refinement Rules do not typically remove relations

and nodes, but rather mark them as no longer relevant by

adding relations as described in the example above. Once a

relation was removed, other rules cannot match whether the

rule was once there, whereas just marking entities keeps the

knowledge about the entity intact, while still removing it from

most reasoning. There are, for example, card effects which

work with dead minions, such as “Summon 7 Murlocs that

died this game” (where “Murloc” is certain type of minion).

Therefore, the Dynamic Knowledge keeps growing as the

game continues. While this is not the most ideal scenario, it

helps a lot with debugging and inspecting the current state of

the bot. Even with ever growing semantic structures, the

memory footprint of the bot is not a problem, as each relation

is only a few bytes of data. Comparing an ever growing

semantic structure to a semantic structure using rules that

actually truncate relations also had no impact on the reasoning

speed of the bot. Our hypothesis is that most rules reject

additional relations early, such as the rule above immediately

checking if the node already “has“ “Death”, while additional

rules to truncate and clean-up the Dynamic Knowledge also

require additional processing time to be applied.

B. Goal Rules

Goal rules are a set of rules that contribute to the utility

calculation. They describe domain knowledge on the victory

conditions of the game, of which there is only a single one in

Hearthstone: bringing the hostile hero’s health to or below 0.

It is important to highlight that the Goal Rules only describe

domain knowledge, not expert knowledge which will also

influence utility calculation. The Planning Rules described

below focus on dealing with that.

Goal Rules have a similar formal definition as Refinement

Rules: They search for a pattern in the knowledge base, but

instead of manipulating it, they output a utility value. During

the utility calculation, the World-State Mappings described

below create “Planning_Nodes” which are fictitious entity

states describing the result of an action. These nodes have a

“planning” relation towards their respective actual entity as

present in the current world-state. Figure 5 shows an excerpt

of how the semantic structure would look like. The goal rule

would just match for a node which “is_a” “Hero” and “is_a”

“Planning_Node” and the utility would just be the delta in the

“amount” attributes of the relations ending in “Health” and

originating from the matched node and from the node to which

it has a “planning” relation, respectively. In this example 24-

21 = 3. Goal rules are defined in the same formal way as

Refinement Rules seen above.

 8

Figure 5: An excerpt of the knowledge base during utility calculation. A
utility is currently calculated for an action that alters the “Health” of

“Hero_02”. Therefore, a fictitious “Hero_47” planning node was spawned for

which other rules are now triggering and Goal Rules can produce a utility for
reducing Hero “Health”, by comparing the “Hero_47”-”has”-”Health” amount

to the ”has”-”Health” amount of node for which “Hero_47” is “planning”.

C. World-State Mappings

In order to connect the bot effectively to a game, functionality

needs to be implemented to connect it to a running game

instance and reading its world-state. From a point of view of

the reasoning process, World-State Mappings are optional:

they just automate alterations on the semantic structure that,

conceptually, could be performed manually to reconstruct the

current game-state and apply some aspects of the game

mechanics. Another important aspect of World-State

Mappings is to generate the valid action space at a given point

of time and spawning the planning nodes for each action when

its utility calculation takes place. In the current version of the

bot, World-State Mappings don’t have a formal definition and

are natively implemented, as they highly rely on the specific

game and the connection used to read and write to it. Many of

them, however, consult the Static Knowledge: When planning

an “Attack” action and calculating its utility, the World-State

Mappings check what an Attack actually means in the Static

Knowledge and find that an “Attack” “alters” “Health”,

allowing them to spawn the respective planning nodes and

relations.

D. Planning Rules

Planning Rules, finally, express expert knowledge and how

it is applicable in a certain game-state. Such expert knowledge

can be very subtle, however. A good example is a situation,

where the bot has two minions on the board and it’s opponent

has one. The bot now has to infer whether just attacking the

enemy hero is the best course of action, or whether removing

the opponent minion, perhaps even sacrificing one of its own,

is more effective. If reasoning would solely rely on the Goal

Rules, the result would be obvious: Attacking a hero

contributes towards the Goal Rule, thus netting utility,

whereas attacking a minion doesn’t. Such reasoning, however,

ignores an important aspect of the game: Minions can attack

each turn. Yet, the bot has no way to be sure whether the

minion will still be available next turn, as the enemy player

might remove it. This is where Planning Rules come into play:

They generate utility values for actions serving as a forecast

on utility value deltas for actions available next turn. In this

example, a Planning Rule could check how much removal

capability – such as attack value on minions – the enemy has

available and how easy removing our minions for the enemy

becomes. If attacking and destroying their minion with one of

ours improves the odds for our minions to survive, this would

net a utility value, as the bot can expect that these minions are

still available next turn to potentially contribute towards a

Goal Rule – dealing damage to the enemy hero. An example

utility calculation with all rules involved is shown below.

Planning Rules are described in the same declarative format

as Goal Rules and Refinement Rules are. Their requirements

and behavior are identical to Goal Rules, they just differ in

describing expert knowledge, rather than objective

implications of game mechanics. Yet, at least for the

Hearthstone implementation, Planning Rules ended being

much more complex and computationally expensive than the

Goal Rule, as they typically involve many queries towards the

semantic structure. Planning Rules can also describe the meta-

game, such as assigning extra utility for removing certain

minions, as they might have popular synergies with spells or

other mechanics.

E. Maintaining the rule-sets

All the rules described above are maintained manually.

While the Planning Rules involve expert knowledge, the

Refinement Rules and Goal Rules are another piece of

objective information, being maintained similarly to the Static

Knowledge sharing the advantage of only having to describe

what something does, not what it means. Planning Rules,

however, also don’t describe a strategy, but just how a certain

entity will probably contribute towards Goal Rules over time.

As such, Planning Rules often utilize the Goal Rules. Yet,

Planning Rules can always introduce a subjective bias to the

bot. One such instance was actually encountered during

development: An early version of the bot played some classes,

particularly the Priest, very bad in comparison to other

seemingly similar classes and decks. After investigating the

recorded games, we noticed that the bot seems to be

undervaluing healing abilities – a key concept of the Priest

class. This happened due to the way healing was expressed in

the Planning Rules, with its impact on keeping minions alive

being forgotten. Once a few respective Planning Rules were

altered and added, the win percentage of the Priest bot against

the stock AI increased dramatically (from about 20% to about

80%).

IV. UTILITY CALCULATION EXAMPLE

Consider a board as shown in Figure 6. The bot is playing

hunter (“Rexxar”) with two minions on the board: A

“Boulderfist Ogre” with 6 attack and 4 health remaining and a

“Kobold Geomancer” with 2 attack and 2 health. Its opponent

is Mage (“Jaina Proudmoore”) with a 4 attack and 2 health

“Stormpike Commando” on the board. For the sake of

simplicity, this example will ignore the respective player’s

hand and just illustrate how utility calculation for minions

works. The utility calculation for playing cards is identical,

just involves different Planning and Refinement Rules.

To begin reasoning, the World-State Mappings produce a

 9

list of valid actions. Actions in Hearthstone originate from the

hand, including the bot’s Hero Power, and from the board. The

bot’s hero power, “Steady Shot”, deals 2 damage to the hostile

hero and does not allow specifying targets, so it ends up with

two valid actions: using or not using it. In case of the game

board, the bot ends up with two valid attack targets for its

minions: the enemy hero and the enemy “Stormpike

Commando” minion. Further, a minion could do nothing this

turn, so the action space ends up consisting of 8 valid actions

for which utilities have to be computed. The action with the

best utility will then be executed. Afterwards, the whole

process starts anew until an empty action space remains. The

bot has to repeat the utility calculation, and cannot just do the

n best actions, as many effects in Hearthstone have a certain

randomness to them and thus are non-deterministic. Planning

Rules will cover such randomness with some expectations, but

once the action was actually executed, utility calculation uses

the most recent world-state.

The utility calculation might start with the actions

originating from the “Boulderfist Ogre”. There are three

actions available: “attack”-“Enemy Hero”, “attack”-

“Stormpike Commando”, and “do nothing”. The utility of

each action is the sum of the utilities produced by each Goal

Rule and the utilities produced by each Planning Rule.

For the “Boulderfist Ogre”-”attack”-”Enemy Hero” action,

the World-State Mappings will produce the respective

planning nodes, consulting the Static Knowledge on how the

Game Mechanics would evaluate. No Refinement Rules are

required here and, in this example, the only result of the attack

is causing the enemy hero to drop by 6 health and not

changing the board in any further way. Thus, the Goal Rule

will trigger and produce a utility of 6. Planning Rules (which

will be illustrated for the next action) would not trigger for this

action so the utility for “Boulderfist Ogre”-”attack”-”Enemy

Hero” ends up being 6.

The next action is “Boulderfist Ogre”-”attack”-”Stormpike

Commando”. Again, the World-State Mappings prepare the

respective planning nodes. Then, the Refinement Rules will

run and assign “has”-”Death” relations to both the fictitious

planning instances of the minions, as their health would both

drop to 0 as a result of the attack. In this case, the health of the

enemy hero is not affected, and as such the Goal Rule does not

trigger, producing a utility of 0. Yet, another change happened

on the board: both the “Boulderfist Ogre” and the “Stormpike

Commando” died. This is where one of the Planning Rules

triggers: the capability of the enemy player to remove the

remaining minion was reduced, thus increasing the likelihood

for its survival. This rule iterates over all of the bot’s minions

and checks whether the opportunity for the enemy to remove

them changed. This Planning Rule will check how much

damage the enemy could deal to the minion and how that

changed after executing the current action. In this example,

there are two sources of damage: the enemy “Stormpike

Commando” with 4 attack and the enemy hero power

“Fireblast” which allows to deal 1 damage to a minion per

turn. Before executing the action, the enemy had the

opportunity to remove the “Kobold Geomancer”, as 4 damage

from “Stormpike Commando” are sufficient, thus the removal

opportunity was 1. After executing the action, the “Stormpike

Commando” is gone, so the removal opportunity dropped to 0,

as the 1 damage from “Fireblast” is not sufficient to remove it.

Thus, a delta in the expected utility for next turn took place:

An attack with the “Kobold Geomancer” on the enemy hero (a

Goal Rule contribution) would produce 2 utility, multiplied by

the delta in removal (1-0=1). Thus, the Planning Rule will add

a utility of 2*1=2 to attacking the “Stormpike Commando”.

Yet, the Planning Rule also triggers for the “Boulderfist

Ogre”. Before executing the action, the removal opportunity

was 1 and after the attack we know that the minion will be

dead, so it’s also 1, netting a total delta contribution of 1-1=0

times its Goal Rule utilities.

Figure 6: A board situation for which the bot (Player A: “Rexxar”) has to

derive utilities. Player A controls two minions: “Boulderfist Ogre” on the left
and “Kobold Geomancer” on the right. Player B controls only a single minion,

a “Stormpike Commando”

 10

In a real scenario, the removal opportunity of a minion is

not a boolean of 0 and 1, but rather an expectation due to

uncertainty: This example was fully observable and ignored

the enemy hand, thus ignoring uncertainty. At game start, the

World-State Mappings generate a list of deck candidates,

which is a list of nodes representing cards which are allowed

to be in the hostile deck (some cards are class specific or not

collectible and spawned through other card’s effects). If the

enemy player would have had a card in their hand, the

Planning Rule would have checked whether there is

knowledge about this card (it could be a previously revealed

card or a card returned from the board to their hand). In case

of uncertainty – not knowing anything about the card – it is

represented by having a “is_a” “Deck_Candidate” relation.

This Planning Rule would then run over all valid

“Deck_Candidates” and check whether they are sufficient to

remove the minion in question. In the example of the

“Boulderfist Ogre” minion instance, it would look for cards

that deal 3 damage (+1 damage from “Fireblast”), 4 damage or

remove the minion otherwise. Further, only cards are

considered which could be played next turn, for example due

to mana limitations. The contribution to the removal

opportunity would then be a real value between [0,1]

representing how probable it is that a such a spell – or

combination of spells – is in the enemy hand. As an example,

assume the removal opportunity for the “Boulderfist Ogre” is

to be derived, but, unlike the example above, the opponent

player B has a card in their hand and 6 Mana available. The

unknown card is represented by a “Deck Candidate” and the

Planning rules will now proceed in browsing through the

potential cards, finding move sequences that could destroy the

“Boulderfist Ogre”. A Straightforward one is the spell

“Fireball” that deals 6 damage for 4 Mana, sufficient to kill

the Ogre. A “Frostbolt” deals 3 damage for 2 Mana, but the

enemy Hero Power, “Fireblast”, also deals 1 damage for 2

Mana, another valid removal combo. There are also more

complex combinations, like freezing the Ogre with a “Frost

Nova” and then using “Shatter” which immediately destroys a

frozen minion. This “Deck Candidate” resolution algorithm is

purely based on Dynamic and Static Knowledge and ignores

cards that cannot be in the opponent Deck, for example as they

don’t belong to the Mage Class or because they were already

observed twice (the maximum number a card may be

contained in a Deck). Finally, the removal opportunity

contribution is the probability that the respective cards are in

the opponent hand. As this example only goes with one card,

the removal opportunity contribution will be the number if

found moves involving the “Deck Candidate” divided by the

number of valid cards.

This naive approach just expected that all

“Deck_Candidates” are equally probable, which is obviously

not the case: some strategies dominate the current meta-game

and some card combinations are much more likely to be

encountered than others. This can be represented by weights

being applied to the “Deck_Candidates”: If some cards of a

certain popular deck were encountered already, the odds for

seeing more cards of such a deck would rise. This offers

opportunities to combine the approach with ML or data

mining techniques looking for cards that often appear together

in decks.

If the utility calculation as described above is repeated for

each of the other actions, the bot will end up with utility

values as shown in Figure 7. In the first iteration, two actions

are tied for the best utility: “Boulderfist Ogre”-”attack”-

”Hero” and “Kobold Geomancer”-”attack”-”Stormpike

Commando”. In case of a tie, one of the winning actions is

chosen randomly. Say the bot will attack with the ogre first,

then the utility calculation will start again. Yet this time, the

World-State Mapping will not produce any actions for the

“Boulderfist Ogre”, as it already performed an action this turn

and is thus marked as exhausted, unable to do anything else.

For this example, the utility calculation after the “Boulderfist

Ogre”-“attack” will look the same for the “Kobold

Geomancer” actions and the bot will now attack the

“Stormpike Commando” with its “Kobold Geomancer”. Once

the Gamestate Mappings updated dynamic knowledge, only

the “Steady Shot” actions remain and the bot will fire it at the

enemy hero. Now, finally, the World-State Mapping will

produce an empty action space and the bot will end its turn. In

this small example just utilizing a hand full of rules and the

semantic structure, the bot acted according to a fundamental

principle of Hearthstone strategies: Board presence.

Action Goal Rules

Utility

Planning Rules

Utility

Total

Utility

Ogre -> Hero 6 0 6

Ogre -> Commando 0 0 + 2 2

Ogre do nothing 0 0 0

Kobold -> Hero 2 0 2

Kobold -> Commando 0 0 + 6 6

Kobold do nothing 0 0 0

Steady Shot -> Hero 2 0 2

Steady Shot do nothing 0 0 0

Figure 7: Utility values for all available actions in the example as described
above. The attack-Commando actions consist of two planning utilities: One

for the attacking minion – which dies in both cases, and one for the other

minion which is now harder to remove.

This example illustrates how a utility system together with

rules and a semantic structure implements a symbolic AI for

Hearthstone. Yet, the bot currently only solves the runtime

part of playing Hearthstone, without solving the meta-game

itself: deck construction. Skipping the complete meta-game of

deck building, the bot currently relies on having somebody to

provide a deck for it. We just started work on a deck building

system, similar to a recommender system that could construct

decks based on the Static Knowledge exploiting cost

efficiency, mana curves, synergies and other metrics between

cards. This might serve as an interesting alternative to other

researched approaches towards deck building, such as genetic

algorithms or ML on human games. Such a deck-building

mechanism could also be used to improve the calculation of

probabilities for unknown entities, such as the deck

candidates, as there are certain cards per class which are very

likely to be contained in a deck. There are also certain groups

of cards which are often used in a deck together, as they form

 11

strong synergies. This could also be exploited to arrive at

better probability calculations for the Planning Rules.

V. EXPERIMENTAL EVALUATION

The evaluation of the symbolic approach consists of four

major stages. At first, we will compare the performance

against the built-in AI of Hearthstone and an MTCS

implementation, with all players playing the Mage class. In a

second round, we will assess how well the bot generalizes to

different hero classes, each featuring some unique strategies

and decks. As a final effectivity test, we will put the bot

against human opponents of various skill levels. To gather

information on the second important metric of a “good”

player-level AI, we performed a pseudo-Turing test. For each

of the evaluations, we also gathered runtime performance

statistics to support this secondary, but engineering-wise vital

metric in game development.

A. MCTS Comparison

Ward et al [6] have demonstrated an application of MCTS

for a minimized version of “Magic: The Gathering”, a popular

physical TCG sufficiently similar to Hearthstone. The

implementation we opted for follows the analysis by Cowling

et al [5], representing an MCTS with UCT. We went for an n-

degree tree, as this allowed us to easily reuse the action-space

generation functionality we already built for the symbolic AI.

The MCTS bot also uses determinization such as Cowling et

al report in their paper, using the same ratio between number

of determinizations and simulations they found to be optimal

for their scenario: 40 determinizations with 250 simulations

each. For each determinization, the outcome of all random

events was fixed, such as the deck ordering or the roll for

random damage numbers. To determinize the hostile decks, a

random but valid hostile deck was constructed for each

determinization set. We did not supply any kind of action

filtering, though, as we did not want to take the ability away to

use some of Hearthstone’s more complex synergies, such as

transforming damage into healing and then casting a damage

spell on a friendly target or even the friendly hero itself.

Noticeably, such seeming suicidal actions can be about half

the action space in Hearthstone. For the simulations, we used a

purely random player. Victories were awarded with a score of

+1 and losses or draws (as rare as they are) were both

rewarded with a score of 0.

In the test series, we fielded both the symbolic AI and the

MCTS implementation against the expert AI of Hearthstone,

in order to get some comparison if the symbolic AI can

compete with a simple MCTS implementation. All three

players were fixed to play the Mage hero-class. While the

Hearthstone Expert AI used their deck as listed on the

Hearthstone wiki10, both the symbolic AI and the MCTS

implementation used an optimized beginner’s deck that does

not include any cards that would have to be unlocked first.

This deck is considered to be a powerful start deck by the

community, although it lacks many of the powerful unlocked

10 http://hearthstone.gamepedia.com/Practice_mode

cards that other decks – such as the Expert AI – put to use. Its

details are described on the community page IcyVeins11. Both

the MCTS and the symbolic bot played 101 test games against

the expert AI. As the rules of Hearthstone define, the starting

player was chosen randomly. The results are detailed in figure

8 and show that the symbolic approach won 65% of the

games, while the MCTS implementation won 36%. There are,

however, many ways in which the MCTS implementation

could be improved, for example by switching over to binary

trees as Cowling et al recommended for their “Magic: The

Gathering” implementation [5]. They also utilize more

complex simulations and determinizations, such as trying to

identify interesting deck compositions and not just performing

random playouts. Thus, a more fine-tuned MCTS

implementation would probably lead to a stronger win

percentage. However, this test series further supports our

claim that a Symbolic AI can compete with MCTS approaches

in game domains such as Hearthstone. In particular,

throughout the test games we observed some interesting

behavior by the MCTS bot. In some occasions, it followed a

suicidal action, such as casting a damaging spell on its own

minions. A closer investigation of some of these situations

yield an interesting result: most of them had a particularly

rule-changing card in their determinization setup. In

Hearthstone, there are many cards that dramatically alter the

game state, such as destroying all minions on the board,

converting healing into damage or swapping all health and

attack values. This is a greater change in fundamental rules

and game mechanics as encountered in many other game

domains. If such a card, for example “Twisting Nether”

destroying all minions, is included in the determinization

deck, any action performed in the current state might actually

have less or no impact on the future a few turns later.

Hearthstone features many of these large-scale game changer

cards and every expansion keeps adding more of them. Thus

we argue that a symbolic approach might compete with MCTS

in game domains in which the underlying rules can change to

such a degree that it becomes difficult to assess what an

action’s outcome will be at runtime.

Bot Games Played Games Won Win Percentage

Symbolic

Expert System
101 65 65% (9.2)

Monte Carlo

Tree Search
101 36 36% (9.2)

Figure 8: Comparison of a simple MCTS system and the symbolic Expert
System both playing against the built-in Expert AI. Error margins are

computed through the Adjusted Wald Method for a target confidence level of

95%.

B. Class Coverage

The first test series compared both the Symbolic Expert

System and the MCTS implementation against the stock

Hearthstone AI. These tests were conducted within the actual

Hearthstone client. However, due to technical and license

restrictions, these tests could not be entirely automated: while

both AIs read from the Hearthstone game-state, their input still

11 http://www.icy-veins.com/hearthstone/basic-mage-deck

 12

had to be executed by a Human proxy, limiting the number of

tests that could be conducted. Being able to play with the

official client was important, in particular for tests versus

Humans and to assess believability (see sections V-C and V-

D). In order to achieve a better statistical coverage, we opted

to implement a Hearthstone simulation – minus any visual

representation – allowing fully automated test series.

In this test series, we let the Symbolic Expert System and

the MCTS implementation compete directly against each other

playing as the nine available classes. For each pairing, 400

games were conducted, leading to a total of 32400 games.

Both bots used the same optimized beginner decks for the

classes as described in section V-A. They can be found on

IcyVeins12. The win rates of the Symbolic AI for each pairing

are illustrated in Figure 9. At first glance, the Symbolic Expert

System beats the MCTS implementation in all test series.

Interestingly though, the performance varies greatly from class

to class. Some of these variances might originate in the natural

imbalance of Hearthstone, in particular for the chosen decks: a

deck is usually not equally effective against each possible

opponent playstyle. Shaman, for example, was a deck that

showed strong plays for both contestants. However, while the

Symbolic AI operates on a similar level with Rogue and

Shaman (overall win percentages of 86% and 83%), the

MCTS implementation performs far better as a Shaman – with

an overall win percentage of 35% it’s actually the favored

class of the MCTS bot by far, followed with some distance by

Hunter (overall win percentage of 29%) and Paladin (overall

win percentage of 27%). Rogue is in fact the third weakest of

the MCTS classes, performing at a low 17% win percentage.

It’s interesting to see that, while the Symbolic bot performs at

about equal level with the two classes, there is a great

discrepancy in the MCTS results. An explanation might be

found in the different playstyles of these classes. The Shaman

class in Hearthstone, as well as the Hunter, usually plays very

aggressively, trying to maximize damage dealt over the course

of a game. This is a pretty strong contrast to the combo and

synergy oriented gameplay of classes like the Rogue. This

could hint at the MCTS bot being more effective when it

comes to longer-term planning to maximize damage and board

presence, whereas the Symbolic Expert System might excel in

short-term decision making, even for complex synergies and

game mechanics relations.

 Looking at the overall results again shows that the

Symbolic Expert System plays all classes well against the

MCTS implementation, ranging from an overall win

percentage of 73% while playing Druid to a win percentage of

85% while playing Rogue. The best performance was

observed in the Symbolic Shaman vs. MCTS Priest series and

the worst performance surfaced in the Symbolic Warrior vs.

MCTS Shaman series.

12 http://www.icy-veins.com

Symbolic Druid victories against MCTS …

Dr Hu Ma Pa Pr Ro Sh Wl Wa

273 262 324 237 355 317 271 300 292

68% 66% 81% 59% 89% 79% 68% 75% 73%

4.5 4.6 3.8 4.8 3.1 4.0 4.6 4.2 4.3

Symbolic Hunter victories against MCTS …

Dr Hu Ma Pa Pr Ro Sh Wl Wa

341 286 351 314 375 333 243 311 313
85% 72% 88% 79% 94% 83% 61% 78% 78%

3.5 4.4 3.2 4.0 2.4 3.7 4.8 4.1 4.0

Symbolic Mage victories against MCTS …

Dr Hu Ma Pa Pr Ro Sh Wl Wa

312 320 342 292 381 337 255 312 318

78% 80% 86% 73% 95% 84% 64% 78% 80%

4.1 3.9 3.5 4.3 2.2 3.6 4.7 4.1 4.0

Symbolic Paladin victories against MCTS …

Dr Hu Ma Pa Pr Ro Sh Wl Wa

299 259 336 259 363 310 252 296 289

75% 65% 84% 65% 91% 78% 63% 74% 72%

4.2 4.7 3.6 4.7 2.9 4.1 4.7 4.3 4.4

Symbolic Priest victories against MCTS …

Dr Hu Ma Pa Pr Ro Sh Wl Wa

319 274 341 303 375 327 240 295 318

80% 69% 85% 76% 94% 82% 60% 74% 80%

3.9 4.5 3.5 4.2 2.4 3.8 4.8 4.3 4.0

Symbolic Rogue victories against MCTS …

Dr Hu Ma Pa Pr Ro Sh Wl Wa

337 306 376 319 386 356 317 347 348

84% 77% 94% 80% 97% 89% 79% 87% 87%

3.6 4.2 2.4 3.9 1.9 3.1 4.0 3.3 3.3

Symbolic Shaman victories against MCTS …

Dr Hu Ma Pa Pr Ro Sh Wl Wa

324 316 367 316 387 349 283 312 345
81% 79% 92% 79% 97% 87% 71% 78% 86%

3.8 4.0 2.7 4.0 1.8 3.3 4.4 4.1 3.4

Symbolic Warlock victories against MCTS …

Dr Hu Ma Pa Pr Ro Sh Wl Wa

315 282 359 302 381 335 261 323 315
79% 71% 90% 76% 95% 84% 65% 81% 79%

4.0 4.5 3.0 4.2 2.2 3.6 4.6 3.9 4.0

Symbolic Warrior victories against MCTS …

Dr Hu Ma Pa Pr Ro Sh Wl Wa

291 255 349 278 376 337 233 288 332

73% 64% 87% 70% 94% 84% 58% 72% 83%

4.4 4.7 3.3 4.5 2.4 3.6 4.8 4.4 3.7

Figure 9: Effectiveness evaluation against the MCTS AI in the Hearthstone

simulation. The figure shows victories / victory percentage / error margin of

the Symbolic Expert System of a fixed class against the MCTS
implementation playing each of the 9 hero classes (Dr: Druid, Hu: Hunter,

Ma: Mage, Pa: Paladin, Pr: Priest, Ro: Rogue, Sh: Shaman, Wl: Warlock, Wa:

Warrior). For each pairing, 400 test games were conducted. Error margins are
computed through the Adjusted Wald Method for a target confidence level of

95%.

C. Human opponents

To test how well the bot fares in games against human

players, we performed a series of test games against players of

different skill and experience levels. The bot used a randomly

selected class and the same premade decks that were used in

the experiment against the stock AI detailed above. The

human players were allowed to play whatever class or deck

they prefer and usually play with. To assess their skill level,

we used the player rank assigned through Hearthstone. When

playing against other humans in the typical Hearthstone game

modes, a player accumulates points for each victory, raising in

rank. Ranks start at 25 and ascend to rank 1, finally reaching

Legend, while losing games past rank 20 will cause you to

lose points. According to the developer, Blizzard

 13

Entertainment, 75% of all players are in the rank brackets

between 25 and 15, 17.5% between 15 and 10, 5.5% between

10 and 5 with the remaining 2.5% of the player base scoring at

rank 5-Legend13. The exact number of players actively playing

Hearthstone is unknown, but in 2015 Blizzard Entertainment

announced reaching a playerbase of 30 million14. The bot

performed well in the Rank 25-20 bracket with a win rate over

90%, then decreasing down to only winning a single game

against the Legend-ranked player. A detailed chart is shown in

Figure 9. A frequent feedback we got was that, while the bot

was playing its cards sufficiently well, it was lacking many of

the powerful cards that players unlock as they rise in ranks. A

rank 1 player noted that “Die KI hat schlechte Karten und ein

paar Fehler gemacht, würde es aber sicher auf Rang 10

schaffen” (en: “the AI had bad cards and did some mistakes,

but would certainly be able to reach Rank 10”). We are not

that optimistic, as the bot only won 25% of the games in the

rank 14-10 bracket, but reaching rank 15 seems to be realistic,

which, according to the chart published by Blizzard, would

place the bot among the top 25% of human players as players

stabilize at a rank winning about half the games they play.

Rank

Bracket

Number of

Human Players

Games

Played

Games

Won

Win

Percentage

25-20 5 45 41 91% (9.2)

19-15 5 45 31 68% (13.2)

14-10 2 24 6 25% (16.8)

9-5 2 24 2 8% (12.9)

4-1 1 12 1 8% (19.1)

Legend 1 15 1 6% (16.3)

Figure 10: Effectiveness evaluation against Human players, detailed results

per rank bracket. Error margins are computed through the Adjusted Wald

Method for a target confidence level of 95%.

D. Believability

While the above study with human players showed that the

bot can play Hearthstone sufficiently well to achieve victory,

it didn’t yet show whether the bot follows strategies and

executes moves that a human player would also do. We

therefore performed another round of tests to assess the bot’s

believability through pseudo-Turing tests [16]: Human

participants of various skill levels played against either the bot

or a rank 14 player and, after five games, had to give their

impression against whom they played. Whether a game was

played by the bot or the rank 14 player was chosen randomly

and both used a randomly selected deck from the Hearthstone

Expert deck pool. Human participants were allowed to use any

deck and were told that winning was not important for this test

series, but rather should they aim to find out against whom

they play, leading to some players actually forging “probing”

decks where they aimed to confront a potential AI with

difficult decisions. The result of the believability evaluation is

shown in Figure 11. Of the 41 games the bot played, it was

mistaken for a humans in 41% percent of the games,

indicating that the bot plays believable.

13 http://us.battle.net/hearthstone/en/blog/15955974/hearthside-chat-youre-

better-than-you-think-9-18-2014
14

https://twitter.com/PlayHearthstone/status/595619019593416704/photo/1

 Human player identified their actual enemy ...

Rank Games

Played

Bot

as Bot

Human

as Human

Bot

as Human

Human

as Bot

25 5 2 0 1 2

25 5 3 2 0 0

25 10 2 4 4 0

20 10 3 2 3 2

20 5 1 1 3 0

17 5 1 2 1 1

14 10 3 2 3 2

12 10 3 4 2 1

6 10 6 4 0 0

Sum 70 24 (34%) 21 (30%) 17 (24%) 8 (11%)

Figure 11: Results of a Pseudo-Turing test. Each row represents a test series
with one participant.

E. Runtime Performance

Runtime performance was not a primary criterion for

evaluation, as Hearthstone is turn-based and gives players a lot

of time to think. The current implementation of the bot in

VB.Net still has potential for optimization, but already

performs its complete reasoning in less than 50ms on a 2.5

GHz core, which is well sufficient for Hearthstone. Many of

the queries on the semantic structure could be parallelized, of

which we expect great potential to improve the runtime

performance by utilizing multiple cores. Another direction we

are currently investigating is introducing several caches to

avoid computation of some expensive queries on the semantic

structures. In particular within the planning rules, when taking

card candidates of the hostile player’s hand into account,

many queries could be cached, at least within the current

Planning Rule: Hearthstone is static and thus the world-state

will not change during planning. Yet, exploiting the

declarative nature of how cards are described in the Static

Knowledge, their side effects could be tracked and further

delay the cache invalidation even through several turns. In the

test games of which results are shown in Figure 9, the peak

memory consumption was 71 MiB, recorded during a

Planning Rule playing against a Warlock deck which typically

plays with a large hand size. The average memory

consumption throughout all games was 55 MiB. The longest

reasoning time on a single 2.5 GHz core was 47 ms, recorded

during a game session with a full enemy board and many

triggered abilities causing chain reactions. The fastest

reasoning time encountered, typically at the start of a game

session, was 3 ms. Figure 12 sums up these findings.

Metric Min Max Average

Memory Usage 21 MiB 73 MiB 55 MiB

Reasoning Time 3 ms 46 ms 18 ms

Figure 12: Runtime Performance metrics of 279 test games fielding the

Symbolic Expert System against the Stock Hearthstone AI.

Throughout the 202 test games the bots performed in the

MCTS comparison (101 per bot implementation), we also kept

record of some performance statistics. The MCTS

implementation used a budget of 10000 simulations, split to

250 simulations per 40 determinization sets. Hereby, the

reasoning time of the MCTS was significantly slower than the

symbolic implementation, but still sufficiently fast for a turn-

 14

based game such as Hearthstone. Additional optimizations,

particularly when fusing the trees of several determinization

sets, could greatly reduce the reasoning time. Details are

shown in figure 13.

Bot Min Max Average

Symbolic

Expert System
5 ms 67 ms 24 ms

Monte Carlo

Tree Search
257 ms 21050 ms 12088 ms

Figure 13: Reasoning time metrics for the 202 test games performed in the

MCTS comparison test.

VI. CONCLUSION AND OUTLOOK

We described how semantic structures can be an effective

representation for a symbolic AI, mapping both static domain

knowledge and dynamic runtime memories in the same data

structure. Using a simple reasoning algorithm we were able to

show a bot for Hearthstone that bases most of its reasoning on

operations on the semantic structure and a small set of rules.

In a comparison we could show that such a symbolic agent can

compete with MCTS for this specific game domain. The

effectiveness evaluation against the Hearthstone Expert AI and

Human players showed that the bot can play the game

sufficiently well with all classes and would probably end up in

the top half of players if it would participate in the

Hearthstone online league. The believability evaluation via a

Pseudo-Turing test showed that the bot plays sufficiently

human, too. Thus, we conclude that the presented approach

can be used to implement a good player-level AI, if “good” is

defined to cover an AI that plays both efficiently and

believable.

While this paper followed an implementation of a Symbolic

AI for Hearthstone, the approach is also applicable for other

games of the TCG game domain and perhaps even other

genres. In general, as mentioned above, the approach seems to

be well suited for game domains in which the game mechanics

can change significantly at runtime. We have already

demonstrated an application for the RTS “StarCraft 2”15 [17,

18], where a symbolic reasoning system derives build items to

produce from a Static and Dynamic Knowledge Base and a

collection of rules. The StarCraft 2 implementation is very

similar, but did not yet do the split between Expert and

Domain knowledge as explicitly. This is due to the fact that

the game mechanics of StarCraft 2 are less prone to change

during a game session and if such changes happen, like an

upgrade being researched that alters how an ability works,

they are more predictable than card effects in Hearthstone.

The StarCraft 2 implementation focused especially on teaming

the bot up with a human player, thus mapping human

statements like “I will take care of air defense” on knowledge

of the bot, interpreting it as Game Mechanics changing.

Another application of this approach is currently being

developed for the 4X game Civilization 5 used for an assistant

AI acting as a governor to which a player can transfer the

control of a city to. The Civilization 5 version of the bot

15 Blizzard Entertainment, 2010 (http://us.battle.net/sc2/en/)

comes with another category of rules mapping human

information, as human and bot cooperation is a vital aspect

when using the bot to serve as an assistant to the human

player.

In the TCG game domain, one of the aspects we didn’t yet

mention is deck construction. Unlike the runtime reasoning

presented here, deck construction is highly dependent on the

“meta game”, thus which cards and strategies are currently

popular. Thus, it is harder to formulate explicit Static

Knowledge about this aspect of Hearthstone. We are currently

working on a deck construction system and reported early

finding recently [27]. Our overall concept is to integrate deck

construction and runtime play. We hope to achieve this by

transferring knowledge on why a specific card was included

from deck construction to the runtime system. This seems

relevant as there are many ambiguous cards in Hearthstone

that can be used in very different ways.

In terms of runtime reasoning, we hope to increase the

reasoning speed further. Our plans are to combine the

symbolic system with MCTS. Here, MCTS could decide

which cards to play, while the symbolic system selects targets

for those cards and performs attacks and similar actions. This

would greatly reduce the branching factor of the resulting

MCTS tree, as each action now only consists of whether to

play a card or not, without having to deal with the different

targets a card could be used at. On the symbolic end, the

whole reasoning is split into much smaller, more parallelizable

steps. Our rationale is that a combination with MCTS might

help the bot in executing moves that require longer-term

planning. If the symbolic agents become fast enough, they

might even be suitable for a simulation policy. Combining the

symbolic AI with other approaches already used in the field

seems like an interesting research direction to continue this

work.

REFERENCES

[1] Ontanón, Santiago, and Synnaeve, Gabriel, and Uriarte, Alberto, and

Richoux, Florian, and Churchill, David, and Preuss, Mike. "A survey of
Real-Time Strategy Game AI Research and Competition in Starcraft."

IEEE Transactions on Computational Intelligence and AI in Games

(2013): 293-311.
[2] Buro, Michael. "Call for AI Research in RTS Games." Proceedings of

the AAAI-04 Workshop on Challenges in Game AI (2004): 139-142.

[3] Buro, Michael, and Furtak, Timothy. "RTS Games as Test-Bed for Real-
Time AI Research." Proceedings of the 7th Joint Conference on

Information Science (2003): 481-484.

[4] Yannakakis, Geogios N. "Game AI revisited." Proceedings of the 9th
conference on Computing Frontiers (2012): 285-292.

[5] Cowling, Peter I., and Ward, Colin D., and Powley, Edward J.

"Ensemble Determinization in Monte Carlo Tree Search for the
Imperfect Information Card Game Magic: The Gathering." IEEE

Transactions on Computational Intelligence and AI in Games (2012):

241-257.
[6] Ward, Colin D., and Cowling, Peter I. "Monte Carlo Search applied to

Card Selection in Magic: The Gathering." Proceedings of the IEEE

Symposium on Computational Intelligence and Games (2009): 9-16.
[7] Goes, Luis Fabricio Wanderley, and da Silva, Alysson Ribeiro, and

Rezende, Joao, and Amorim, Alvaro, and Franca, Celso, and Zaidan,

Tiago, and Olimpio, Bernardo, and Ranieri, Lucas, and Morais, Hugo,
and Luana, Shirley. "HoningStone: Building Creative Combos with

Honing Theory for a Digital Card Game." IEEE Transactions on

Computational Intelligence and AI in Games (2016).

 15

[8] Churchill, David, and Buro, Michael. "Hierarchical Portfolio Search:

Prismata’s Robust AI Architecture for Games with Large Search
Spaces." Proceedings of the Artificial Intelligence in Interactive Digital

Entertainment Conference (2015).

[9] Bursztein, Elie. "I am a Legend: Hacking Hearthstone with Machine
Learning." Talk at Defcon (2014).

[10] Weber, Ben George, and Mateas, Michael. "A Data Mining Approach to

Strategy Prediction." Proceedings of the IEEE Symposium on
Computational Intelligence and Games (2009): 140-147.

[11] Wender, Stefan, and Watson, Ian. "Applying Reinforcement Learning to

small scale Combat in the Real-Time Strategy Game Starcraft:
Broodwar." Proceedings of the IEEE Conference on Computational

Intelligence and Games (2012): 402-408.

[12] Cadena, Pedro, and Garrido, Leonardo. "Fuzzy Case-Based Reasoning
for Managing Strategic and Tactical Reasoning in Starcraft." Advances

in Artificial Intelligence (2011): 113-124.

[13] Weber, Ben George, and Mateas, Michael. "Case-Based Reasoning for
Build Order in Real-Time Strategy Games." Proceedings of the AAAI

Conference on Artificial Intelligence and Interactive Digital

Entertainment (2009).
[14] Schwartz, Steven. "Principles of Semantic Networks." (1984).

[15] Orkin, Jeff. "Data-Driven Digital Actors." Keynote on the IEEE

Conference on Computational Intelligence and Games (2012).
[16] Livingstone, Daniel J. "Turing's Test and Believable AI in Games."

Computers in Entertainment (2006): 6-19.

[17] Stiegler, Andreas, and Livingstone, Daniel J., and Maucher, Johannes,
and Dahal, Keshav "Starcraft II Build Item Selection with Semantic

Nets." Proceedings of the GAMEON conference (2015): 55-60.
[18] Stiegler, Andreas, and Livingstone, Daniel J. "AI and Human Player

Cooperation in RTS games." Proceedings of the Foundations of Digital

Games conference (2013): 449-450.

[19] Mahlmann, Tobias, and Togelius, Julian and Yannakakis, Georgios N.

"Evolving Card Sets towards Balancing Dominion." Proceedings of the

IEEE Congress on Evolutionary Computation (2012): 1-8.

[20] Allis, Louis V.. "Searching for Solutions in Games and Artificial

Intelligence." Ponsen & Looijen (1994).

[21] Robertson, Glen, and Watson, Ian. "A Review of Real-Time Strategy

game AI." AI Magazine 35.4 (2014): 75-104.

[22] Browne, Cameron B, and Powley, Edward, and Whitehouse, Daniel, and

Lucas, Simon M, and Cowling, Peter I, and Rohlfshagen, Philipp, and

Tavener, Stephen, and Perez, Diego, and Samothrakis, Spyridon, and

Colton, Simon. "A Survey of Monte Carlo Tree Search Methods." IEEE

Transactions on Computational Intelligence and AI in Games (2012): 1-

43.

[23] Ginsberg, Matthew L. "GIB: Imperfect Information in a computationally

challenging Game." Journal of Artificial Intelligence Research 14

(2001): 303-358.

[24] Buro, Michael, and Long, Jeffrey R., and Furtak, Timothy, and

Sturtevant, Nathan R. "Improving State Evaluation, Inference, and

Search in trickbased Card Games." Proceedings of the International Joint

Conference on Artificial Intelligence (2009): 1407–1413

[25] Furtak, Timothy, and Buro, Michael. "Recursive Monte Carlo Search for

Imperfect Information Games." Proceedings of the IEEE Conference on

Computational Intelligence in Games (2013): 1-8.

[26] Long, Jeffrey R., and Sturtevant, Nathan R., and Buro, Michael, and

Furtak, Timothy. "Understanding the Success of Perfect Information

Monte Carlo Sampling in Game Tree Search." Proceedings of the AAAI

Conference on Artificial Intelligence (2010).

[27] Stiegler, Andreas, and Messerschmidt, Claudius, and Maucher,

Johannes, and Dahal, Keshav. "Hearthstone Deck-Construction with a

Utility System." Proceedings of the 10th International Conference on

Software, Knowledge, Information Management & Applications (2016).

[28] Mark, Dave, and Dill, Kevin. “ Improving AI Decision Modeling

Through Utility Theory”, Talk at the Game Developers Conference

(2010).

