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Abstract—Trading-Card-Games are an interesting problem 

domain for Game AI, as they feature some challenges, such as 

highly variable game mechanics, that are not encountered in this 

intensity in many other genres. We present an expert system 

forming a player-level AI for the digital Trading-Card-Game 

Hearthstone. The bot uses a symbolic approach with a semantic 

structure, acting as an ontology, to represent both static 

descriptions of the game mechanics and dynamic game-state 

memories. Methods are introduced to reduce the amount of 

expert knowledge, such as popular moves or strategies, 

represented in the ontology, as the bot should derive such 

decisions in a symbolic way from its knowledge base. We narrow 

down the problem domain, selecting the relevant aspects for a 

play-to-win bot approach and comparing an ontology-driven 

approach to other approaches such as machine learning and 

case-based reasoning. Upon this basis, we describe how the 

semantic structure is linked with the game-state and how 

different aspects, such as memories, are encoded. An example 

will illustrate how the bot, at runtime, uses rules and queries on 

the semantic structure combined with a simple utility system to 

do reasoning and strategic planning. Finally, an evaluation is 

presented that was conducted by fielding the bot against the 

stock “Expert” AI that Hearthstone is shipped with, as well as 

Human opponents of various skill levels in order to assess how 

well the bot plays. Evaluating how believable the bot reasons is 

assessed through a Pseudo-Turing test. 

I. INTRODUCTION 

“Hearthstone: Heroes of Warcraft”1 (or “Hearthstone” for 

short) is a digital Trading-Card-Game (TCG), comparable to 

other examples of its genre, such as “Magic: The Gathering”2 

or “Android: Netrunner”3. We propose a concept for a player-

level AI playing the full game of Hearthstone. TCGs typically 

offer various types of cards, such as minions and spells, which 

cost resources to play. Minions battle against the minions of 

enemy players to achieve victory. An important aspect of 

TCGs – and Hearthstone in particular – is planning on how to 

use the available cards and which actions to perform. These 
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planning aspects and the reasoning systems required for it are 

focus of our research. 

A lot of reasoning and planning research is currently 

conducted for Real-Time-Strategy (RTS) games, such as 

“StarCraft”4, as analyzed by Ontanón et al [1]. Reasoning and 

planning in games, RTS games in particular, was promoted as 

an interesting research problem by Buro [2, 3] and by many 

researchers since then [4]. In Hearthstone, as in RTS games, a 

lot of short and long term planning has to be done. RTS bots 

are typically split into micro- and macro-management, dealing 

with individual units or the large scale battle plan respectively. 

The move selection in Hearthstone is arguably of similar 

complexity to typical planning tasks in RTS. Selecting which 

card to play or selecting which unit to produce might be a 

similar problem. Yet, Hearthstone has some preferable 

properties for developing game AI, in contrast to an RTS. 

Hearthstone is non-spatial, as the position of cards are only 

discrete slots, not a continuous map. This allows the AI to skip 

micro-management altogether, focusing on the strategic and 

tactical reasoning of playing cards. Further, Hearthstone is 

static, so the game-state is not changing while the reasoning 

process runs, while still offering typical game AI planning 

challenges, such as being adversarial, partially observable and 

having temporal constraints on actions. The TCG game 

domain, however, comes with some interesting challenges. 

Uncertainty, for example, is of a different flavor in TCGs than 

in RTS games. In RTS games, partial information usually 

originates from not being able to perfectly observe the enemy. 

However, each game session consists of the same game 

entities, making guessing a good option. There are only so 

many openings a player can perform in an RTS and once a 

certain building was scouted, it is reasonable to infer the 

strategy behind the current enemy build. In TCGs, however, it 

is even uncertain which game entities – which cards – the 

enemy player might be using. There are certain baseline cards 

that can be expected, but in general guessing is harder in 

TCGs. In Hearthstone, a player’s deck consists of 30 cards of 

a card pool of over a thousand and of the 30 cards, many will 

be duplicates. A player in a TCG game session only uses a 

tiny bit of the game’s mechanics to deploy their strategy, 

whereas other domains, like RTS, utilize a large portion of 

their game mechanics in every single game. 

Further, the impact of synergies and interactions between 

game mechanics has more impact on the flow of the game. In 

TCGs, it is not uncommon for a single card to gain a greatly 

increased amount of value out of it when synergizing it with 
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other cards. A minion could get 10 times the attack and health 

values if used correctly. Synergies also appear in other game 

domains, but in TCGs they are particularly escalating. This 

often goes hand in hand with the tendency of TCGs to alter 

their game mechanics at runtime. The rules by which attacks 

or spells work may be altered by other cards, allowing creative 

synergies and combos. 

Due to these properties, TCGs are already used in academic 

work, such as using Monte Carlo Tree Search to cover 

uncertainty [5] or card selection [6]. Other work, such as 

HoningStone [7], focuses on the creative aspects of selecting 

card combos. Mahlmann et al [19] introduce the deck-building 

card game “Dominion”5 as a testbed to construct interesting 

decks. Although RTS research saw a far greater variety of 

approaches deployed, we want to propose TCGs as a testbed 

for the higher-level planning problems, which are often hard 

to work on in RTS games, as they typically tie towards micro-

management, thus requiring a multi-agent approach to cover 

all the aspects of a full RTS: If the underlying micro-

management is not solved sufficiently well, higher-level 

planning will be limited, too. As described in [1], all academic 

StarCraft bots in the respective challenges used a multi-agent 

structure of some kind, typically splitting the reasoning task 

into higher-level planning and lower-level micro-management 

problems. Churchill, one of the developers of the TCG and 

RTS hybrid “Prismata”6, dissects the architecture of their 

TCG-AI in [8] and also illustrates the challenges. 

TCGs also share some similarities with other card games, 

such as Contract Bridge. Similar to TCGs, a player’s available 

game entities, their hand, are note observable by others. Buro, 

Long and Furtak [24, 25] demonstrated a Monte Carlo 

approach for Skat and, along with the Perfect Information 

Monte Carlo approach of Ginsberg and Long et al. [23], both 

solutions are now considered expert-caliber players, as Long 

[26] reports. Thus, Monte Carlo Tree Search seems like a 

good candidate to be applied to TCGs, but wasn’t yet able to 

replicate the success. 

Reasoning problems similar to those found in Hearthstone 

are already solved via other approaches, most dominantly 

Machine Learning (ML), Case-Based-Reasoning (CBR), and 

Monte Carlo Tree Search (MCTS). The TCG game domain, 

however, is an example of game domains with some 

interesting properties: their tendency to alter game mechanics 

and even basic rules of the game at runtime, a complex action 

space including many seemingly suicidal actions and a high 

degree of synergies between individual game elements. Our 

hypothesis is that for this game domain – and perhaps similar 

ones – a symbolic AI can produce a good player-level AI 

playing to win the game. Here, we define a player-level AI as 

“good” if it is capable of playing effective – thus winning 

games against various opponents – and believable – producing 

strategies that are perceived as natural by human players. 

Other common metrics for player-level AI evaluation, such as 

runtime performance and controllability, are secondary. This 

 
5 Rio Grande Games, 2008 (http://riograndegames.com/Game/278-
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6 Lunarch Studios (http://blog.prismata.net/2014/12/17/the-prismata-ai/) 

chapter will briefly highlight ML, CBR and MCTS and gives 

some rational why we think a symbolic approach might 

perform on a competitive level in this particular game domain. 

Chapter II will introduce the knowledge representation for the 

proposed symbolic system. Chapter III then explains the actual 

reasoning process and Chapter IV gives an example of the 

approach in action. The evaluation chapter will compare the 

performance of our approach against an MCTS agent, as 

MCTS can be considered the good standard in similar game 

domains, producing effective reasoning results. The evaluation 

will also cover how well the AI plays different classes, plays 

against human players of different skill-levels and a pseudo-

Turing test to assess how believable it performs. 

A. Machine Learning 

A ML approach to Hearthstone could analyze recorded 

human games to identify how cost effective individual cards 

are. Such a metric could then act as a utility function. A 

similar approach to value Hearthstone cards through ML was 

presented on the Defcon by Elie Bursztein [9] and is available 

on his website7. One could further search for good move 

sequences or even identify predominant strategies, such as 

classifying the opponent deck early through cards played. For 

similar problems in RTS games, such as strategy prediction 

where a strategy is a sequence of moves – very similar to a 

TCG – there are already some applications with promising 

results, such as the work done by Weber [10] or Wender [11]. 

Such ML approaches are effective solutions that often do most 

of their processing at development time and thus have very 

good runtime complexity. ML approaches might, however, 

encounter some challenges in game domains where the 

underlying mechanics and entities change frequently – such as 

in Hearthstone: A single card can turn all healing into damage 

or swap the attack and defense of all minions. If such 

fundamental rules of the game can change frequently, that 

makes modelling an actual game-state or strategic decision for 

a ML approach difficult.  

B. Case-Based Reasoning 

CBR approaches, on the other hand, put a database of 

recorded situations at their heart. These situations are often in 

a more abstract format and offer abstraction and concretization 

methods to move from a current game-state into the abstract 

domain of the database, perform a search for the most similar 

cases, and then concretize the actions performed in the 

recorded cases back to the current game-state. Looking again 

at similar planning problems in the RTS domain, we see 

solutions for selecting proper action sequences in tactical 

reasoning, such as the work done by Cadena [12] or even 

whole build orders such as the approach by Weber [13]. 

Particularly the concretization step in CBR, moving from an 

abstract action performed in a case to a concrete action 

available in the current action space is a vulnerable point of 

CBR approaches, in particular when the action space of a 

game is highly variable. This will lead to situations where 

cases very close to the current game-state were found, but the 
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actions that lead to victory in those cases are not available in 

the current action space. This is particularly probable for 

TCGs, as the majority of their action space – the cards in a 

player’s hand – is randomly selected.  

C. Monte Carlo Tree Search 

A particular well-researched category of reasoning and 

planning algorithms in games are tree-based approaches. They 

build on forward-modelling future game states and action 

spaces to arrive at a tree describing how the future of the game 

may evolve. On this tree, a search algorithm can now operate 

to find a move that pushes the overall expected future of the 

game into a favorable direction. The original version of these 

approaches became popular as soon as the 90s, such as the 

book by Allis [20] with many examples from physical turn-

based games such as Chess or Go. In terms of digital games, 

tree-search saw many applications, but wasn’t yet able to 

solve the high-level planning problems of a player-level AI in 

complex game genres, as Robertson and Watson [21] 

summarize for the RTS game domain. Recent research focuses 

more on Monte Carlo versions of game tree search, which 

solve constructing and expanding the tree in a stochastically 

sampled manner. Browne et al [22] give a good overview on 

the applications and current state of Monte Carlo Tree Search 

as of the year 2012. In general, the TCG game domain is 

suited for the application of tree based reasoning approaches: 

they are turn-based and thus temporally discrete, offering a 

clear way on how to map the causality of a game onto a tree. 

Further, they are often spatially discrete and have less 

complex overall game states compared to other tactical games 

such as RTS. In the Hearthstone reddit8, there is a report of a 

MCTS implementation for Hearthstone, though with some 

limitations such as having perfect knowledge. In the broader 

scope of TCGs, there is also work on using MCTS by Ward et 

al [6] for a simplified version of “Magic: The Gathering” only 

allowing minion cards and a greatly reduced card pool. In their 

work, they illustrate a common approach, the bandit-based 

MCTS implementing an Upper Confidence Bound (UCB or 

UCT if applied to trees). They evaluate several combinations 

of using rule-based, random and Monte Carlo approaches for 

the different tasks in their minimalized TCG version (Attack, 

Blocking, Playing Cards) where the best result was produced 

by a rule-based attacker and blocker using MCTS for playing 

cards. 

However, there are also some challenges in the TCG 

domain. In general, TCGs have a relatively large branching 

factor and a huge variety in actions. Knowledge about the 

hostile hand is usually inaccessible and thus there is a strong 

factor of uncertainty. With card pools of several hundreds or 

even thousands, this leads to a huge variety in the potential 

action space for the same game state, leading to an explosion 

in branching factors for TCGs, as Cowling et al [5] found. A 

common technique for MCTS approaches in situations with 

uncertainty is reducing the problem to a perfect information 

game through determinization. Cowling et al [5] detail such an 
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approach for “Magic: The Gathering”. In TCGs, the key 

stochastic element is usually drawing a card from the player’s 

decks. A determinization strategy could create fixed deck lists 

and then span of a MCTS tree using a deck list to determinize 

all otherwise stochastic card draws. In their comparison of 

several different MCTS players, the naive UCT 

implementation scored worst with a win rate of 26% at most, 

whereas determinization-bots scored far better, in particular 

when using a binary MCTS tree (in which each node 

represents the decision whether to execute a specific action or 

not) compared to the otherwise common n-degree trees (in 

which each node represents the decision which of the available 

actions to execute). Besides the huge branching factor, another 

challenge of the TCG domain is more subtile. The action 

spaces of TCGs are usually “polluted” with actions that are 

suicidal in many situations: it is allowed by the rules of these 

games to use cards in seemingly awkward ways, such as 

killing one’s own minions with a fireball or even casting the 

fireball at a player’s own hero. This would be similar to an 

FPS allowing a player to shoot themselves with their guns. 

However, these seemingly suicidal actions exist for a reason. 

There are often opportunities to combine cards and effects in 

creative ways exploiting such actions. A popular example 

from Hearthstone is playing the minion “Sylvanas 

Windrunner” and then immediately destroying her with a 

spell. When “Sylvanas Windrunner” dies, she takes over a 

random enemy minion. Thus, a combination evolving around 

the seemingly suicidal action of killing one’s own minion can 

be a powerful way to steal a particular threat the enemy 

deployed. In a MCTS simulation with a random simulation 

policy, however, many of these actions will be played in 

situations where they are truly suicidal. One could filter them, 

but that could render a bot less able to use many of the 

powerful combinations and moves they offer. The tendency of 

the TCG game domain to alter the rules and mechanics of the 

game during a game session renders pruning actions harder, as 

it is more difficult to assess at development time whether 

actions should be pruned or not. Taking a closer look at 

Hearthstone, its game domain offers another interesting 

property: a given situation might not have a significant impact 

on the end of the game. Hearthstone contains many cards that 

allow to completely change the game state with just a single 

move, such as cards like “Twisting Nether” that kills all 

minions on the board, or “Reno Jackson” that heals all damage 

inflicted to a hero, or even “Renounce Darkness” that allows a 

Warlock to omit all their Warlock-specific cards and replace 

them with some from another class, effectively switching a 

player’s hero class during the course of a game session. Thus, 

the MCTS simulation, effectively searching for a path from 

the current state to a victory state, might not take these game-

changer cards into account or a random-player simulation 

might imagine them too often. Due to its good results solving 

many planning problems in TCGs and related game domains, 

we chose an MCTS implementation as a measurement to 

ground the performance of a symbolic system. Details can be 

found in the evaluation chapter below. 
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D. Symbolic Expert Systems 

As Hearthstone is an example of a game domain with both 

highly variable game mechanics and an unforeseeable action 

space, we were interested whether other approaches can 

perform well. We opted to put an expert system using an 

ontology in the form of a semantic structure at the heart of our 

bot. During development, a key element in improving the 

performance of the bot was to tailor and design what kind of 

information is stored in which part of the semantic structure. 

Hereby we differentiate between several categories of 

knowledge: memories, domain knowledge and expert 

knowledge. Memories are the representation of the current 

state in which the game is and how we got there. Domain 

Knowledge is any objective information that describes the 

problem domain, such as the rules and mechanics of 

Hearthstone, whereas expert knowledge is information about 

the meta-game, such as how valuable certain cards are or 

which combos are dominant in strategies, which is often 

derived from long-term experience. However, we try to 

minimize the usage of expert knowledge, such as storing 

which cards offer synergies or which move sequences may 

form popular strategies. This decision allowed us a relatively 

cheap expansion of the bot to include new cards and features, 

as most of the reasoning is built upon Domain Knowledge and 

Memories which both don’t require tremendous amounts of 

data mining or test games to get. Only the Memories and 

Domain Knowledge are stored directly in the Knowledge 

Base, whereas expert knowledge plays a role in the production 

rules as described below. 

II. DYNAMIC AND STATIC KNOWLEDGE 

The heart of our bot is the ontology, the knowledge base 

which represents the state of the world and any further 

knowledge for the reasoning process. The knowledge base of 

the bot is organized in two primary segments: Static and 

Dynamic Knowledge. Static Knowledge is knowledge with 

which the bot is initialized, for example containing knowledge 

on which cards there are, how their effects work, what the 

rules of the game are etc. Static Knowledge represents generic 

information on the game that’s not specific to a game session. 

The Static Knowledge merely describes the objective domain 

knowledge – the rules and mechanics of the game – just as a 

human could find them in a manual or Wikipedia. The Static 

Knowledge is authored manually and covers all recent cards 

and game mechanics up to the “Whispers of the Old Gods” 

expansion pack (“One Night in Karazhan” was not yet 

released when this paper was written). 

Dynamic knowledge, in contrast, describes the entities 

which are currently active in a game session and thus the 

memory of the bot. While the Static Knowledge, for example, 

would encode that there is an “Auchenai Soulpriest” card, 

which is a minion with 3 attack and 5 health that turns healing 

abilities into damage, the Dynamic Knowledge would encode 

that there is one “Minion #17” in the current game session, 

that’s an instance of “Auchenai Soulpriest” and has 3 health 

remaining. Both knowledge bases are represented in a single 

semantic net using a simplified format similar as described in 

[14]. Such a net consist of a list of nodes, a list of relations, 

and a list of attributes. 

Nodes typically represent entities or concepts of the game 

world, such as “Card” or “Health”. In some ontology formats, 

nodes can carry attributes to define further aspects of the 

represented concept, for example having a “cost” attribute to a 

node that represents a building. After some experimentation, 

we omitted node-attributes and instead stored such 

information entirely through relations, which still can have 

attributes. This leaves nodes to only having checks for 

identity, whereas most semantics are represented through 

relations and their attributes. Omitting node attributes made 

the reasoning rules much more simpler and the resulting 

ontology was still sufficient to represent the mechanics of 

Hearthstone. 

Relations form a directed graph spanning over the nodes. 

Relations encode semantics between nodes, such as “Auchenai 

Soulpriest”-”is_a”-”Minion”, and are the key data structure in 

our approach. They can be further decorated with attributes to 

add additional information, such as describing that “Auchenai 

Soulpriest”-”has:4”-”Cost”. 

Figure 1 illustrates how the three basic data types relate to 

each other and how they are implemented in the current 

version of the bot. The implementation contains three further 

tables for human readability, mapping node::ID, 

Relation::type and Attribute::type to strings. 

 

 
Figure 1: Semantic structure data specification, showing all required data 
fields. 

 

Queries on the semantic structure now become search 

operations in the three datasets, such as answering the 

question if “Auchenai Soulpriest” “is_a” “Card” becomes a 

search query in the relations list, looking for a path that starts 

at the node of “Auchenai Soulpriest”, ends at the node of 

“Card” and only uses relations of the type “is_a”. The 

approach of putting a large data structure at the heart of the 

reasoning process is greatly influenced by the keynote of Jeff 

Orkin at the CIG2012 [15], proposing that reasoning systems 

for games can become closer to search engines performing 

lookups in a vast pool of memories. Our approach represents 

domain knowledge and memories in the same data structure, 

closely linking them to allow search operations that span over 

both, for example to answer the question if “Minion #02” 

“has” “Taunt”. “Taunt” is an attribute that certain minions can 

have, forcing an opponent to attack them first before they can 

inflict damage to the enemy player. As “Taunt” is an attribute 

of a specific card, such as “Voidwalker”, the “has” “Taunt” 

relation would be part of the Static Knowledge. The node 
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“Minion #02”, however, is a specific instance of a minion in 

this very game session and is therefore part of the current set 

of Dynamic Knowledge, but “Minion #02” would have a 

“is_a” relation to the Static Knowledge “Voidwalker” node. 

Answering the above question now becomes a pathfinding 

query, looking for a path between “Minion #02” and “Taunt”, 

only using “is_a” and “has” relations. This also covers cases 

where an attribute such as “Taunt” can either be a static 

property of a card, as in the case detailed above, or where 

“Taunt” can be added to a minion through special effects, such 

as the Spell “Mark of the Wild”, granting a minion an attack 

and health bonus, as well as “Taunt”. In this case, the minion 

node would have a dynamic “has” relation to “Taunt”, without 

the need to climb up several “is_a” relations to ascend into 

Static Knowledge. Figure 2 shows an example of how static 

and Dynamic Knowledge are represented in a semantic 

structure. 

The two fundamental relations in a semantic structure are 

abstraction (“is_a”) and aggregation (“has”), with all other 

relations (such as “alters”) being shortcuts with hardcoded 

semantics. When querying the semantic structure to return an 

attribute value there might be multiple, conceptually correct 

answers. Figure 2, for example, contains multiple “has”-

“Health” relations, one with an “amount” attribute of 1, one 

with 5 and one without any “amount” attribute at all. The 

attribute retrieval algorithm, however, always returns the value 

of the attribute that is least abstract, thus that required to pass 

by as few “is_a” relations as possible. In the example in figure 

2, the “Minion”-“has”-“Health” relation requires following 

two “is_a” relations from “Minion_013” to be reached, while 

the “Minion_013”-“has”-“Health” relation requires none. 

Thus, the latter would be the relation from which the attribute 

is extracted. The same process is used for all attribute 

retrieval. 

 

 
Figure 2: Excerpt of the semantic net, illustrating the relations between a 

Dynamic Knowledge node representing a concrete instance of a minion and 

the Static Knowledge related to this minion: A “Minion” just always has 
“Health”, an “Auchenai Soulpriest” has 5 base “Health” and the instance 

“Minion_013” of the current game session has only 1 “Health” remaining. 

 

The semantic net for Static Knowledge used in the current 

version of the bot covers all collectible cards of Hearthstone, 

including the expansions that were released after launch up 

until “Whispers of the Old Gods”. It contains 2156 nodes, 

10954 relations of 19 distinct types and 6384 attributes of 8 

distinct types. During a typical game session, the Dynamic 

Knowledge allocates ~1200 additional nodes, representing 

active minions, the player's hand and knowledge of the enemy, 

for example through cards that were returned to an enemy's 

hand. These nodes span ~2500 additional dynamic relations to 

other dynamic or static nodes and introduce ~900 attributes. 

Both static and Dynamic Knowledge can be serialized, of 

which a sample is shown in Figure 3. 

 
"Earth Elemental": { 

 "relations": [ 

   { 

     "type": "is_a", 

     "target": "Minion" 

   }, 

   { 

     "type": "has", 

     "target": "Cost", 

     "attributes": [ 

       {"type": "amount", "value": 5} 

     ] 

   }, 

   { 

     "type": "has", 

     "target": "Overload", 

     "attributes": [ 

       {"type": "amount", "value": 3} 

     ] 

   }, 

   { 

     "type": "has", 

     "target": "Attack", 

     "attributes": [ 

       {"type": "amount", "value": 7} 

     ] 

   }, 

   { 

     "type": "has", 

     "target": "Health", 

     "attributes": [ 

       {"type": "amount", "value": 8} 

     ] 

   }, 

   { 

     "type": "has", 

     "target": "Taunt" 

   } 

 ] 

} 

 

Figure 3: Excerpt of a serialized minion node “Earth Elemental” with its 

relations towards more abstract nodes such as “Minion” (superclass) or “Cost” 

(component). The strings used as labels for types and targets are translated 
into unique IDs when parsed. 

 

At first glance, using a semantic net as a knowledge base 

might just look like a glorified look-up where a simple table 

would have been sufficient. However, the big benefit of 

semantic structures are that it’s possible to describe the 

semantics of game mechanics instead of hard-coding them 

into the reasoning system of the bot. The “Earth Elemental” 

example shown in Figure 3, for example, could also have been 

described using fields with fixed semantics, such as a field 

“Cost” or “Overload”. In such an AI system, the semantics of 

these fields are predetermined through the reasoning 

algorithm. One could see that as hard-coding the domain 

knowledge about the “Overload” game mechanic into the 

reasoning process. An AI system which later-on uses this 

field, for example in a cost calculation, would then rely on that 

the hard-coded semantics are still the same. While this is a 

well-established approach and works well for many game-AI 

problems, we argue it is not optimal for situations where the 

underlying game mechanics can change. In the case of 

Hearthstone, there are many cards which alter the fundamental 
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rules of the game, such as “Auchenai Soulpriest”, a minion 

transforming any source of healing into damage or “Feign 

Death” a spell which allows to trigger any “Deathrattle” 

effects on minions without having them to die (“Deathrattle” 

is an effect which is executed once a minion is destroyed). 

Using a semantic network as a knowledge base, game 

mechanics such as “Damage” or “Healing” can be further 

defined, for example by having “alters” relations towards 

“Health”. This way, game mechanics are described into more 

and more abstract layers of the Static Knowledge, with only 

few nodes remaining for which the bot has to have hard-coded 

semantics. “Health”, to spin the example further, has relations 

describing it as a “Property” of an “Entity”, both very abstract 

concepts which are not directly represented in the game. The 

bot only has to consult a set of hard-coded rules, describing 

how “Properties” and “Entities” relate to a game-state, and can 

infer what all further game mechanics, like what “Attack” or 

“Health”, imply from there on. This gives a bot great 

flexibility to react on changes in the core game mechanics as 

they happen often in TCGs. 

A key point of an approach that works with a vast data 

structure is how this data structure is created and maintained. 

The Static Knowledge bases of the bot are manually created. 

While this seems like involving both a lot of effort and the 

potential for a bias – leaking in domain knowledge – we found 

that the way the knowledge bases are structured is beneficial 

for the creation process. The Static Knowledge base is just 

describing the rules of the game in an objective way, without 

the need of the knowledge base author to think about what a 

certain property of an entity actually implies. It only needs to 

be described what the properties actually do. In cases where 

the AI is developed alongside a game and not a post-release 

addon (like the Hearthstone bot we present here), the 

description of the game mechanics themselves could already 

be used to create a Static Knowledge base automatically. This 

requires the Game Mechanics to be in a declarative format, 

however, in contrast to the popular approach of covering many 

rules of the game in scripting languages such as LUA. We 

experimented with such an approach in “Civilization V”9, 

where game entities are described via SQL tables. After 

creating a small semantic structure that explains what each 

column in the SQL tables means, a script was able to generate 

the majority of the Static Knowledge automatically. Even 

when developing a bot for an existing game which does not 

follow a declarative nature, much of the effort of maintaining 

the Static Knowledge base can be automated. For the 

Hearthstone bot presented in this paper, for example, all basic 

card stats are supplied by a crawler, reading the game data and 

supplying attack and health values, having a property such as 

“Taunt”, costs or other simple numeric values. Only the actual 

card texts, which seem to be covered through scripting in 

Hearthstone, are then left to be manually added to the 

semantic structure.  

 
9 Firaxis Games, 2010 (http://www.civilization5.com/) 

III. REASONING PROCESS 

While the knowledge base represents domain knowledge 

and memories for the bot, it does not yet perform reasoning. 

As with many expert systems, a network of rules is put to use. 

These rules come in different flavors, depending on whether 

they describe goals, game mechanics or expert knowledge. 

They all contribute in calculating a utility value for an action, 

which is then used in an overarching utility system. As such, 

the bot is essentially a simple utility system calculating 

utilities for every valid action at a given point of time, where 

each utility function is a combination of rules and inferences 

working on the knowledge base. This follows the notion of 

utility systems as described by Mark and Dill [28] by mapping 

objective sensor data onto subjective utilities for respective 

actions.  Within the utility calculation, there are four important 

types of rules involved: Refinement Rules, Goal Rules, 

World-State Mappings and Planning Rules. 

Algorithmically speaking, there are two points of 

interaction between the bot and Hearthstone: any game state 

change on Hearthstone will invoke an Update call at the bot, 

while a Reasoning call is triggered during the bot’s turn and 

is expected to return actions to be executed. For each Update 

call, the World-State Mappings adjust dynamic knowledge to 

match the Hearthstone game state and all Refinement Rules 

are triggered. These guarantee that the bot has a consistent and 

correct representation of the Hearthstone game state in 

dynamic knowledge. Then, for each Reasoning call, the 

currently available action space is constructed. For each 

action, World-State Mappings are triggered to populate 

Planning Knowledge with a prediction on what the outcome of 

the respective action will be. Once completed, Refinement 

Rules will run over the Planning Knowledge state to produce a 

consistent view of the fictitious outcome. Now, the utility 

calculation starts. Planning Rules and Goal Rules are 

executed, finding patterns in the Knowledge Base and 

returning utility contributions. The final utility of an action in 

the action space is then the sum if all Planning Rule and Goal 

Rule contributions. The action with the best utility is then 

executed and the process starts anew, until the action space is 

empty. This chapter will describe each of these four types of 

rules in more detail. 

A. Refinement Rules 

While the Static Knowledge describes some aspects of the 

game mechanics, it does not yet grasp the complete 

complexity of a game, in particular its dynamics: How events 

chain, which action triggers what and how side-effects are 

handled. These dynamics are covered via Refinement Rules. 

Such a rule only describes domain knowledge, just as the 

Static Knowledge does. They have a formal definition 

consisting of a Condition and an Operation. The Condition is a 

pattern to look for in the knowledge base, and the Operation 

then adds, removes or alters relations or attributes. They are 

inspired by macros as found in functional languages, such as 

LISP, where certain sequences of an abstract syntax tree are 

rewritten into different representations to allow higher-level 

syntax. Here, Refinement Rules search for patterns in the 
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knowledge base and rewrite them to express what a certain 

constellation actually means. The Refinement Rules are called 

whenever a change in the knowledge base happens, such as a 

human player doing a move or virtual planning nodes being 

spawned. 

A typical example would be marking dead minions in the 

Dynamic Knowledge. A minion instance is represented by a 

node in the Dynamic Knowledge and is considered dead when 

its “Health” is 0 or negative. If so, a relation is added that 

marks the respective minion to “have” “Death”, on which 

other rules can react on. These Refinement Rules are defined 

in a declarative way, for example through JSON. An example 

of such a Refinement Rule is shown in Figure 4. Its conditions 

block describes that the rule matches for “has” relations with 

an attribute “amount” in the range of “-inf” to and including 0. 

Further, additional conditions for its target and origin node 

have to be matched. The target node has to be “Health” and 

the origin node has to have a path through “is_a” relations to 

“Minion” as well as not having a path through “has” relations 

to “Death”. These conditions can be chained recursively to 

describe more complex Refinement Rules: the target and 

origin blocks could contain additional conditions, to define 

that certain relations have to be present. The operation, finally, 

just adds a “has” relation between the origin of the “has”-

“Health” relation (which would be the respective minion) and 

“Death”. 

 
{ 

 "conditions": [ 

   { 

     "type": "has", 

     "attributes": [ 

       {"type": "amount", 

        "valueMin": "-inf",   

        "valueMax": 0} 

     ], 

     "target": { 

       "name": "Health" 

     }, 

     "origin": { 

       "requiredPaths": [ 

         { 

           "allowed": ["is_a"], 

           "target": "Minion" 

         } 

       ], 

       "forbiddenPaths": [ 

         { 

           "allowed": ["has"], 

           "target": "Death" 

         } 

       ] 

     } 

   } 

 ], 

 "operations": { 

   "add": [ 

     { 

       "origin": "this.origin", 

       "target": "Death", 

       "type": "has" 

     } 

   ] 

 } 

}  
Figure 4: Example of a Refinement Rule adding a “has” “Death” relation to 

dead minion nodes in the Dynamic Knowledge. 

 

 

 

These Refinement Rules do not typically remove relations 

and nodes, but rather mark them as no longer relevant by 

adding relations as described in the example above. Once a 

relation was removed, other rules cannot match whether the 

rule was once there, whereas just marking entities keeps the 

knowledge about the entity intact, while still removing it from 

most reasoning. There are, for example, card effects which 

work with dead minions, such as “Summon 7 Murlocs that 

died this game” (where “Murloc” is certain type of minion). 

Therefore, the Dynamic Knowledge keeps growing as the 

game continues. While this is not the most ideal scenario, it 

helps a lot with debugging and inspecting the current state of 

the bot. Even with ever growing semantic structures, the 

memory footprint of the bot is not a problem, as each relation 

is only a few bytes of data. Comparing an ever growing 

semantic structure to a semantic structure using rules that 

actually truncate relations also had no impact on the reasoning 

speed of the bot. Our hypothesis is that most rules reject 

additional relations early, such as the rule above immediately 

checking if the node already “has“ “Death”, while additional 

rules to truncate and clean-up the Dynamic Knowledge also 

require additional processing time to be applied.  

B. Goal Rules 

Goal rules are a set of rules that contribute to the utility 

calculation. They describe domain knowledge on the victory 

conditions of the game, of which there is only a single one in 

Hearthstone: bringing the hostile hero’s health to or below 0. 

It is important to highlight that the Goal Rules only describe 

domain knowledge, not expert knowledge which will also 

influence utility calculation. The Planning Rules described 

below focus on dealing with that. 

Goal Rules have a similar formal definition as Refinement 

Rules: They search for a pattern in the knowledge base, but 

instead of manipulating it, they output a utility value. During 

the utility calculation, the World-State Mappings described 

below create “Planning_Nodes” which are fictitious entity 

states describing the result of an action. These nodes have a 

“planning” relation towards their respective actual entity as 

present in the current world-state. Figure 5 shows an excerpt 

of how the semantic structure would look like. The goal rule 

would just match for a node which “is_a” “Hero” and “is_a” 

“Planning_Node” and the utility would just be the delta in the 

“amount” attributes of the relations ending in “Health” and 

originating from the matched node and from the node to which 

it has a “planning” relation, respectively. In this example 24-

21 = 3. Goal rules are defined in the same formal way as 

Refinement Rules seen above. 
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Figure 5: An excerpt of the knowledge base during utility calculation. A 
utility is currently calculated for an action that alters the “Health” of 

“Hero_02”. Therefore, a fictitious “Hero_47” planning node was spawned for 

which other rules are now triggering and Goal Rules can produce a utility for 
reducing Hero “Health”, by comparing the “Hero_47”-”has”-”Health” amount 

to the ”has”-”Health” amount of node for which “Hero_47” is “planning”. 

 

C. World-State Mappings 

In order to connect the bot effectively to a game, functionality 

needs to be implemented to connect it to a running game 

instance and reading its world-state. From a point of view of 

the reasoning process, World-State Mappings are optional: 

they just automate alterations on the semantic structure that, 

conceptually, could be performed manually to reconstruct the 

current game-state and apply some aspects of the game 

mechanics. Another important aspect of World-State 

Mappings is to generate the valid action space at a given point 

of time and spawning the planning nodes for each action when 

its utility calculation takes place. In the current version of the 

bot, World-State Mappings don’t have a formal definition and 

are natively implemented, as they highly rely on the specific 

game and the connection used to read and write to it. Many of 

them, however, consult the Static Knowledge: When planning 

an “Attack” action and calculating its utility, the World-State 

Mappings check what an Attack actually means in the Static 

Knowledge and find that an “Attack” “alters” “Health”, 

allowing them to spawn the respective planning nodes and 

relations.  

D. Planning Rules 

Planning Rules, finally, express expert knowledge and how 

it is applicable in a certain game-state. Such expert knowledge 

can be very subtle, however. A good example is a situation, 

where the bot has two minions on the board and it’s opponent 

has one. The bot now has to infer whether just attacking the 

enemy hero is the best course of action, or whether removing 

the opponent minion, perhaps even sacrificing one of its own, 

is more effective. If reasoning would solely rely on the Goal 

Rules, the result would be obvious: Attacking a hero 

contributes towards the Goal Rule, thus netting utility, 

whereas attacking a minion doesn’t. Such reasoning, however, 

ignores an important aspect of the game: Minions can attack 

each turn. Yet, the bot has no way to be sure whether the 

minion will still be available next turn, as the enemy player 

might remove it. This is where Planning Rules come into play: 

They generate utility values for actions serving as a forecast 

on utility value deltas for actions available next turn. In this 

example, a Planning Rule could check how much removal 

capability – such as attack value on minions – the enemy has 

available and how easy removing our minions for the enemy 

becomes. If attacking and destroying their minion with one of 

ours improves the odds for our minions to survive, this would 

net a utility value, as the bot can expect that these minions are 

still available next turn to potentially contribute towards a 

Goal Rule – dealing damage to the enemy hero. An example 

utility calculation with all rules involved is shown below. 

Planning Rules are described in the same declarative format 

as Goal Rules and Refinement Rules are. Their requirements 

and behavior are identical to Goal Rules, they just differ in 

describing expert knowledge, rather than objective 

implications of game mechanics. Yet, at least for the 

Hearthstone implementation, Planning Rules ended being 

much more complex and computationally expensive than the 

Goal Rule, as they typically involve many queries towards the 

semantic structure. Planning Rules can also describe the meta-

game, such as assigning extra utility for removing certain 

minions, as they might have popular synergies with spells or 

other mechanics.  

E. Maintaining the rule-sets 

All the rules described above are maintained manually. 

While the Planning Rules involve expert knowledge, the 

Refinement Rules and Goal Rules are another piece of 

objective information, being maintained similarly to the Static 

Knowledge sharing the advantage of only having to describe 

what something does, not what it means. Planning Rules, 

however, also don’t describe a strategy, but just how a certain 

entity will probably contribute towards Goal Rules over time. 

As such, Planning Rules often utilize the Goal Rules. Yet, 

Planning Rules can always introduce a subjective bias to the 

bot. One such instance was actually encountered during 

development: An early version of the bot played some classes, 

particularly the Priest, very bad in comparison to other 

seemingly similar classes and decks. After investigating the 

recorded games, we noticed that the bot seems to be 

undervaluing healing abilities – a key concept of the Priest 

class. This happened due to the way healing was expressed in 

the Planning Rules, with its impact on keeping minions alive 

being forgotten. Once a few respective Planning Rules were 

altered and added, the win percentage of the Priest bot against 

the stock AI increased dramatically (from about 20% to about 

80%). 

IV. UTILITY CALCULATION EXAMPLE 

Consider a board as shown in Figure 6. The bot is playing 

hunter (“Rexxar”) with two minions on the board: A 

“Boulderfist Ogre” with 6 attack and 4 health remaining and a 

“Kobold Geomancer” with 2 attack and 2 health. Its opponent 

is Mage (“Jaina Proudmoore”) with a 4 attack and 2 health 

“Stormpike Commando” on the board. For the sake of 

simplicity, this example will ignore the respective player’s 

hand and just illustrate how utility calculation for minions 

works. The utility calculation for playing cards is identical, 

just involves different Planning and Refinement Rules. 

To begin reasoning, the World-State Mappings produce a 
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list of valid actions. Actions in Hearthstone originate from the 

hand, including the bot’s Hero Power, and from the board. The 

bot’s hero power, “Steady Shot”, deals 2 damage to the hostile 

hero and does not allow specifying targets, so it ends up with 

two valid actions: using or not using it. In case of the game 

board, the bot ends up with two valid attack targets for its 

minions: the enemy hero and the enemy “Stormpike 

Commando” minion. Further, a minion could do nothing this 

turn, so the action space ends up consisting of 8 valid actions 

for which utilities have to be computed. The action with the 

best utility will then be executed. Afterwards, the whole 

process starts anew until an empty action space remains. The 

bot has to repeat the utility calculation, and cannot just do the 

n best actions, as many effects in Hearthstone have a certain 

randomness to them and thus are non-deterministic. Planning 

Rules will cover such randomness with some expectations, but 

once the action was actually executed, utility calculation uses 

the most recent world-state. 

The utility calculation might start with the actions 

originating from the “Boulderfist Ogre”. There are three 

actions available: “attack”-“Enemy Hero”, “attack”-

“Stormpike Commando”, and “do nothing”. The utility of 

each action is the sum of the utilities produced by each Goal 

Rule and the utilities produced by each Planning Rule. 

For the “Boulderfist Ogre”-”attack”-”Enemy Hero” action, 

the World-State Mappings will produce the respective 

planning nodes, consulting the Static Knowledge on how the 

Game Mechanics would evaluate. No Refinement Rules are 

required here and, in this example, the only result of the attack 

is causing the enemy hero to drop by 6 health and not 

changing the board in any further way. Thus, the Goal Rule 

will trigger and produce a utility of 6. Planning Rules (which 

will be illustrated for the next action) would not trigger for this 

action so the utility for “Boulderfist Ogre”-”attack”-”Enemy 

Hero” ends up being 6. 

The next action is “Boulderfist Ogre”-”attack”-”Stormpike 

Commando”. Again, the World-State Mappings prepare the 

respective planning nodes. Then, the Refinement Rules will 

run and assign “has”-”Death” relations to both the fictitious 

planning instances of the minions, as their health would both 

drop to 0 as a result of the attack. In this case, the health of the 

enemy hero is not affected, and as such the Goal Rule does not 

trigger, producing a utility of 0. Yet, another change happened 

on the board: both the “Boulderfist Ogre” and the “Stormpike 

Commando” died. This is where one of the Planning Rules 

triggers: the capability of the enemy player to remove the 

remaining minion was reduced, thus increasing the likelihood 

for its survival. This rule iterates over all of the bot’s minions 

and checks whether the opportunity for the enemy to remove 

them changed. This Planning Rule will check how much 

damage the enemy could deal to the minion and how that 

changed after executing the current action. In this example, 

there are two sources of damage: the enemy “Stormpike 

Commando” with 4 attack and the enemy hero power 

“Fireblast” which allows to deal 1 damage to a minion per 

turn. Before executing the action, the enemy had the 

opportunity to remove the “Kobold Geomancer”, as 4 damage 

from “Stormpike Commando” are sufficient, thus the removal 

opportunity was 1. After executing the action, the “Stormpike 

Commando” is gone, so the removal opportunity dropped to 0, 

as the 1 damage from “Fireblast” is not sufficient to remove it. 

Thus, a delta in the expected utility for next turn took place: 

An attack with the “Kobold Geomancer” on the enemy hero (a 

Goal Rule contribution) would produce 2 utility, multiplied by 

the delta in removal (1-0=1). Thus, the Planning Rule will add 

a utility of 2*1=2 to attacking the “Stormpike Commando”. 

Yet, the Planning Rule also triggers for the “Boulderfist 

Ogre”. Before executing the action, the removal opportunity 

was 1 and after the attack we know that the minion will be 

dead, so it’s also 1, netting a total delta contribution of 1-1=0 

times its Goal Rule utilities. 

 

 
Figure 6: A board situation for which the bot (Player A: “Rexxar”) has to 

derive utilities. Player A controls two minions: “Boulderfist Ogre” on the left 
and “Kobold Geomancer” on the right. Player B controls only a single minion, 

a “Stormpike Commando” 
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In a real scenario, the removal opportunity of a minion is 

not a boolean of 0 and 1, but rather an expectation due to 

uncertainty: This example was fully observable and ignored 

the enemy hand, thus ignoring uncertainty. At game start, the 

World-State Mappings generate a list of deck candidates, 

which is a list of nodes representing cards which are allowed 

to be in the hostile deck (some cards are class specific or not 

collectible and spawned through other card’s effects). If the 

enemy player would have had a card in their hand, the 

Planning Rule would have checked whether there is 

knowledge about this card (it could be a previously revealed 

card or a card returned from the board to their hand). In case 

of uncertainty – not knowing anything about the card – it is 

represented by having a “is_a” “Deck_Candidate” relation. 

This Planning Rule would then run over all valid 

“Deck_Candidates” and check whether they are sufficient to 

remove the minion in question. In the example of the 

“Boulderfist Ogre” minion instance, it would look for cards 

that deal 3 damage (+1 damage from “Fireblast”), 4 damage or 

remove the minion otherwise. Further, only cards are 

considered which could be played next turn, for example due 

to mana limitations. The contribution to the removal 

opportunity would then be a real value between [0,1] 

representing how probable it is that a such a spell – or 

combination of spells – is in the enemy hand. As an example, 

assume the removal opportunity for the “Boulderfist Ogre” is 

to be derived, but, unlike the example above, the opponent 

player B has a card in their hand and 6 Mana available. The 

unknown card is represented by a “Deck Candidate” and the 

Planning rules will now proceed in browsing through the 

potential cards, finding move sequences that could destroy the 

“Boulderfist Ogre”. A Straightforward one is the spell 

“Fireball” that deals 6 damage for 4 Mana, sufficient to kill 

the Ogre. A “Frostbolt” deals 3 damage for 2 Mana, but the 

enemy Hero Power, “Fireblast”, also deals 1 damage for 2 

Mana, another valid removal combo. There are also more 

complex combinations, like freezing the Ogre with a “Frost 

Nova” and then using “Shatter” which immediately destroys a 

frozen minion. This “Deck Candidate” resolution algorithm is 

purely based on Dynamic and Static Knowledge and ignores 

cards that cannot be in the opponent Deck, for example as they 

don’t belong to the Mage Class or because they were already 

observed twice (the maximum number a card may be 

contained in a Deck). Finally, the removal opportunity 

contribution is the probability that the respective cards are in 

the opponent hand. As this example only goes with one card, 

the removal opportunity contribution will be the number if 

found moves involving the “Deck Candidate” divided by the 

number of valid cards. 

This naive approach just expected that all 

“Deck_Candidates” are equally probable, which is obviously 

not the case: some strategies dominate the current meta-game 

and some card combinations are much more likely to be 

encountered than others. This can be represented by weights 

being applied to the “Deck_Candidates”: If some cards of a 

certain popular deck were encountered already, the odds for 

seeing more cards of such a deck would rise. This offers 

opportunities to combine the approach with ML or data 

mining techniques looking for cards that often appear together 

in decks. 

If the utility calculation as described above is repeated for 

each of the other actions, the bot will end up with utility 

values as shown in Figure 7. In the first iteration, two actions 

are tied for the best utility: “Boulderfist Ogre”-”attack”-

”Hero” and “Kobold Geomancer”-”attack”-”Stormpike 

Commando”. In case of a tie, one of the winning actions is 

chosen randomly. Say the bot will attack with the ogre first, 

then the utility calculation will start again. Yet this time, the 

World-State Mapping will not produce any actions for the 

“Boulderfist Ogre”, as it already performed an action this turn 

and is thus marked as exhausted, unable to do anything else. 

For this example, the utility calculation after the “Boulderfist 

Ogre”-“attack” will look the same for the “Kobold 

Geomancer” actions and the bot will now attack the 

“Stormpike Commando” with its “Kobold Geomancer”. Once 

the Gamestate Mappings updated dynamic knowledge, only 

the “Steady Shot” actions remain and the bot will fire it at the 

enemy hero. Now, finally, the World-State Mapping will 

produce an empty action space and the bot will end its turn. In 

this small example just utilizing a hand full of rules and the 

semantic structure, the bot acted according to a fundamental 

principle of Hearthstone strategies: Board presence. 

 
Action Goal Rules 

Utility 

Planning Rules 

Utility 

Total 

Utility 

Ogre -> Hero 6 0 6 

Ogre -> Commando 0 0 + 2 2 

Ogre do nothing 0 0 0 

Kobold -> Hero 2 0 2 

Kobold -> Commando 0 0 + 6 6 

Kobold do nothing 0 0 0 

Steady Shot -> Hero 2 0 2 

Steady Shot do nothing 0 0 0 

Figure 7: Utility values for all available actions in the example as described 
above. The attack-Commando actions consist of two planning utilities: One 

for the attacking minion – which dies in both cases, and one for the other 

minion which is now harder to remove. 

 

This example illustrates how a utility system together with 

rules and a semantic structure implements a symbolic AI for 

Hearthstone. Yet, the bot currently only solves the runtime 

part of playing Hearthstone, without solving the meta-game 

itself: deck construction. Skipping the complete meta-game of 

deck building, the bot currently relies on having somebody to 

provide a deck for it. We just started work on a deck building 

system, similar to a recommender system that could construct 

decks based on the Static Knowledge exploiting cost 

efficiency, mana curves, synergies and other metrics between 

cards. This might serve as an interesting alternative to other 

researched approaches towards deck building, such as genetic 

algorithms or ML on human games. Such a deck-building 

mechanism could also be used to improve the calculation of 

probabilities for unknown entities, such as the deck 

candidates, as there are certain cards per class which are very 

likely to be contained in a deck. There are also certain groups 

of cards which are often used in a deck together, as they form 
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strong synergies. This could also be exploited to arrive at 

better probability calculations for the Planning Rules. 

V. EXPERIMENTAL EVALUATION 

The evaluation of the symbolic approach consists of four 

major stages. At first, we will compare the performance 

against the built-in AI of Hearthstone and an MTCS 

implementation, with all players playing the Mage class. In a 

second round, we will assess how well the bot generalizes to 

different hero classes, each featuring some unique strategies 

and decks. As a final effectivity test, we will put the bot 

against human opponents of various skill levels. To gather 

information on the second important metric of a “good” 

player-level AI, we performed a pseudo-Turing test. For each 

of the evaluations, we also gathered runtime performance 

statistics to support this secondary, but engineering-wise vital 

metric in game development. 

A. MCTS Comparison 

Ward et al [6] have demonstrated an application of MCTS 

for a minimized version of “Magic: The Gathering”, a popular 

physical TCG sufficiently similar to Hearthstone. The 

implementation we opted for follows the analysis by Cowling 

et al [5], representing an MCTS with UCT. We went for an n-

degree tree, as this allowed us to easily reuse the action-space 

generation functionality we already built for the symbolic AI. 

The MCTS bot also uses determinization such as Cowling et 

al report in their paper, using the same ratio between number 

of determinizations and simulations they found to be optimal 

for their scenario: 40 determinizations with 250 simulations 

each. For each determinization, the outcome of all random 

events was fixed, such as the deck ordering or the roll for 

random damage numbers. To determinize the hostile decks, a 

random but valid hostile deck was constructed for each 

determinization set. We did not supply any kind of action 

filtering, though, as we did not want to take the ability away to 

use some of Hearthstone’s more complex synergies, such as 

transforming damage into healing and then casting a damage 

spell on a friendly target or even the friendly hero itself. 

Noticeably, such seeming suicidal actions can be about half 

the action space in Hearthstone. For the simulations, we used a 

purely random player. Victories were awarded with a score of 

+1 and losses or draws (as rare as they are) were both 

rewarded with a score of 0. 

In the test series, we fielded both the symbolic AI and the 

MCTS implementation against the expert AI of Hearthstone, 

in order to get some comparison if the symbolic AI can 

compete with a simple MCTS implementation. All three 

players were fixed to play the Mage hero-class. While the 

Hearthstone Expert AI used their deck as listed on the 

Hearthstone wiki10, both the symbolic AI and the MCTS 

implementation used an optimized beginner’s deck that does 

not include any cards that would have to be unlocked first. 

This deck is considered to be a powerful start deck by the 

community, although it lacks many of the powerful unlocked 

 
10 http://hearthstone.gamepedia.com/Practice_mode 

cards that other decks – such as the Expert AI – put to use. Its 

details are described on the community page IcyVeins11. Both 

the MCTS and the symbolic bot played 101 test games against 

the expert AI. As the rules of Hearthstone define, the starting 

player was chosen randomly. The results are detailed in figure 

8 and show that the symbolic approach won 65% of the 

games, while the MCTS implementation won 36%. There are, 

however, many ways in which the MCTS implementation 

could be improved, for example by switching over to binary 

trees as Cowling et al recommended for their “Magic: The 

Gathering” implementation [5]. They also utilize more 

complex simulations and determinizations, such as trying to 

identify interesting deck compositions and not just performing 

random playouts. Thus, a more fine-tuned MCTS 

implementation would probably lead to a stronger win 

percentage. However, this test series further supports our 

claim that a Symbolic AI can compete with MCTS approaches 

in game domains such as Hearthstone. In particular, 

throughout the test games we observed some interesting 

behavior by the MCTS bot. In some occasions, it followed a 

suicidal action, such as casting a damaging spell on its own 

minions. A closer investigation of some of these situations 

yield an interesting result: most of them had a particularly 

rule-changing card in their determinization setup. In 

Hearthstone, there are many cards that dramatically alter the 

game state, such as destroying all minions on the board, 

converting healing into damage or swapping all health and 

attack values. This is a greater change in fundamental rules 

and game mechanics as encountered in many other game 

domains. If such a card, for example “Twisting Nether” 

destroying all minions, is included in the determinization 

deck, any action performed in the current state might actually 

have less or no impact on the future a few turns later. 

Hearthstone features many of these large-scale game changer 

cards and every expansion keeps adding more of them. Thus 

we argue that a symbolic approach might compete with MCTS 

in game domains in which the underlying rules can change to 

such a degree that it becomes difficult to assess what an 

action’s outcome will be at runtime. 

 
Bot Games Played Games Won Win Percentage 

Symbolic 

Expert System 
101 65 65% (9.2) 

Monte Carlo 

Tree Search 
101 36 36% (9.2) 

Figure 8: Comparison of a simple MCTS system and the symbolic Expert 
System both playing against the built-in Expert AI. Error margins are 

computed through the Adjusted Wald Method for a target confidence level of 

95%. 

B. Class Coverage 

The first test series compared both the Symbolic Expert 

System and the MCTS implementation against the stock 

Hearthstone AI. These tests were conducted within the actual 

Hearthstone client. However, due to technical and license 

restrictions, these tests could not be entirely automated: while 

both AIs read from the Hearthstone game-state, their input still 

 
11 http://www.icy-veins.com/hearthstone/basic-mage-deck 
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had to be executed by a Human proxy, limiting the number of 

tests that could be conducted. Being able to play with the 

official client was important, in particular for tests versus 

Humans and to assess believability (see sections V-C and V-

D). In order to achieve a better statistical coverage, we opted 

to implement a Hearthstone simulation – minus any visual 

representation – allowing fully automated test series. 

In this test series, we let the Symbolic Expert System and 

the MCTS implementation compete directly against each other 

playing as the nine available classes. For each pairing, 400 

games were conducted, leading to a total of 32400 games. 

Both bots used the same optimized beginner decks for the 

classes as described in section V-A. They can be found on 

IcyVeins12. The win rates of the Symbolic AI for each pairing 

are illustrated in Figure 9. At first glance, the Symbolic Expert 

System beats the MCTS implementation in all test series. 

Interestingly though, the performance varies greatly from class 

to class. Some of these variances might originate in the natural 

imbalance of Hearthstone, in particular for the chosen decks: a 

deck is usually not equally effective against each possible 

opponent playstyle. Shaman, for example, was a deck that 

showed strong plays for both contestants. However, while the 

Symbolic AI operates on a similar level with Rogue and 

Shaman (overall win percentages of 86% and 83%), the 

MCTS implementation performs far better as a Shaman – with 

an overall win percentage of 35% it’s actually the favored 

class of the MCTS bot by far, followed with some distance by 

Hunter (overall win percentage of 29%) and Paladin (overall 

win percentage of 27%). Rogue is in fact the third weakest of 

the MCTS classes, performing at a low 17% win percentage. 

It’s interesting to see that, while the Symbolic bot performs at 

about equal level with the two classes, there is a great 

discrepancy in the MCTS results. An explanation might be 

found in the different playstyles of these classes. The Shaman 

class in Hearthstone, as well as the Hunter, usually plays very 

aggressively, trying to maximize damage dealt over the course 

of a game. This is a pretty strong contrast to the combo and 

synergy oriented gameplay of classes like the Rogue. This 

could hint at the MCTS bot being more effective when it 

comes to longer-term planning to maximize damage and board 

presence, whereas the Symbolic Expert System might excel in 

short-term decision making, even for complex synergies and 

game mechanics relations. 

 Looking at the overall results again shows that the 

Symbolic Expert System plays all classes well against the 

MCTS implementation, ranging from an overall win 

percentage of 73% while playing Druid to a win percentage of 

85% while playing Rogue. The best performance was 

observed in the Symbolic Shaman vs. MCTS Priest series and 

the worst performance surfaced in the Symbolic Warrior vs. 

MCTS Shaman series. 
 

 

 
 

 

 
12 http://www.icy-veins.com 

Symbolic Druid victories against MCTS … 

Dr Hu Ma Pa Pr Ro Sh Wl Wa 

273 262 324 237 355 317 271 300 292 

68% 66% 81% 59% 89% 79% 68% 75% 73% 

4.5 4.6 3.8 4.8 3.1 4.0 4.6 4.2 4.3 

Symbolic Hunter victories against MCTS … 

Dr Hu Ma Pa Pr Ro Sh Wl Wa 

341 286 351 314 375 333 243 311 313 
85% 72% 88% 79% 94% 83% 61% 78% 78% 

3.5 4.4 3.2 4.0 2.4 3.7 4.8 4.1 4.0 

Symbolic Mage victories against MCTS … 

Dr Hu Ma Pa Pr Ro Sh Wl Wa 

312 320 342 292 381 337 255 312 318 

78% 80% 86% 73% 95% 84% 64% 78% 80% 

4.1 3.9 3.5 4.3 2.2 3.6 4.7 4.1 4.0 

Symbolic Paladin victories against MCTS … 

Dr Hu Ma Pa Pr Ro Sh Wl Wa 

299 259 336 259 363 310 252 296 289 

75% 65% 84% 65% 91% 78% 63% 74% 72% 

4.2 4.7 3.6 4.7 2.9 4.1 4.7 4.3 4.4 

Symbolic Priest victories against MCTS … 

Dr Hu Ma Pa Pr Ro Sh Wl Wa 

319 274 341 303 375 327 240 295 318 

80% 69% 85% 76% 94% 82% 60% 74% 80% 

3.9 4.5 3.5 4.2 2.4 3.8 4.8 4.3 4.0 

Symbolic Rogue victories against MCTS … 

Dr Hu Ma Pa Pr Ro Sh Wl Wa 

337 306 376 319 386 356 317 347 348 

84% 77% 94% 80% 97% 89% 79% 87% 87% 

3.6 4.2 2.4 3.9 1.9 3.1 4.0 3.3 3.3 

Symbolic Shaman victories against MCTS … 

Dr Hu Ma Pa Pr Ro Sh Wl Wa 

324 316 367 316 387 349 283 312 345 
81% 79% 92% 79% 97% 87% 71% 78% 86% 

3.8 4.0 2.7 4.0 1.8 3.3 4.4 4.1 3.4 

Symbolic Warlock victories against MCTS … 

Dr Hu Ma Pa Pr Ro Sh Wl Wa 

315 282 359 302 381 335 261 323 315 
79% 71% 90% 76% 95% 84% 65% 81% 79% 

4.0 4.5 3.0 4.2 2.2 3.6 4.6 3.9 4.0 

Symbolic Warrior victories against MCTS … 

Dr Hu Ma Pa Pr Ro Sh Wl Wa 

291 255 349 278 376 337 233 288 332 

73% 64% 87% 70% 94% 84% 58% 72% 83% 

4.4 4.7 3.3 4.5 2.4 3.6 4.8 4.4 3.7 

Figure 9: Effectiveness evaluation against the MCTS AI in the Hearthstone 

simulation. The figure shows victories / victory percentage / error margin of 

the Symbolic Expert System of a fixed class against the MCTS 
implementation playing each of the 9 hero classes (Dr: Druid, Hu: Hunter, 

Ma: Mage, Pa: Paladin, Pr: Priest, Ro: Rogue, Sh: Shaman, Wl: Warlock, Wa: 

Warrior). For each pairing, 400 test games were conducted. Error margins are 
computed through the Adjusted Wald Method for a target confidence level of 

95%. 

C. Human opponents 

To test how well the bot fares in games against human 

players, we performed a series of test games against players of 

different skill and experience levels. The bot used a randomly 

selected class and the same premade decks that were used in 

the experiment against the stock AI detailed above. The 

human players were allowed to play whatever class or deck 

they prefer and usually play with. To assess their skill level, 

we used the player rank assigned through Hearthstone. When 

playing against other humans in the typical Hearthstone game 

modes, a player accumulates points for each victory, raising in 

rank. Ranks start at 25 and ascend to rank 1, finally reaching 

Legend, while losing games past rank 20 will cause you to 

lose points. According to the developer, Blizzard 
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Entertainment, 75% of all players are in the rank brackets 

between 25 and 15, 17.5% between 15 and 10, 5.5% between 

10 and 5 with the remaining 2.5% of the player base scoring at 

rank 5-Legend13. The exact number of players actively playing 

Hearthstone is unknown, but in 2015 Blizzard Entertainment 

announced reaching a playerbase of 30 million14. The bot 

performed well in the Rank 25-20 bracket with a win rate over 

90%, then decreasing down to only winning a single game 

against the Legend-ranked player. A detailed chart is shown in 

Figure 9. A frequent feedback we got was that, while the bot 

was playing its cards sufficiently well, it was lacking many of 

the powerful cards that players unlock as they rise in ranks. A 

rank 1 player noted that “Die KI hat schlechte Karten und ein 

paar Fehler gemacht, würde es aber sicher auf Rang 10 

schaffen” (en: “the AI had bad cards and did some mistakes, 

but would certainly be able to reach Rank 10”). We are not 

that optimistic, as the bot only won 25% of the games in the 

rank 14-10 bracket, but reaching rank 15 seems to be realistic, 

which, according to the chart published by Blizzard, would 

place the bot among the top 25% of human players as players 

stabilize at a rank winning about half the games they play. 

 
Rank 

Bracket 

Number of 

Human Players 

Games 

Played 

Games 

Won 

Win 

Percentage 

25-20 5 45 41 91% (9.2) 

19-15 5 45 31 68% (13.2) 

14-10 2 24 6 25% (16.8) 

9-5 2 24 2 8% (12.9) 

4-1 1 12 1 8% (19.1) 

Legend 1 15 1 6% (16.3) 

Figure 10: Effectiveness evaluation against Human players, detailed results 

per rank bracket. Error margins are computed through the Adjusted Wald 

Method for a target confidence level of 95%. 

D. Believability 

While the above study with human players showed that the 

bot can play Hearthstone sufficiently well to achieve victory, 

it didn’t yet show whether the bot follows strategies and 

executes moves that a human player would also do. We 

therefore performed another round of tests to assess the bot’s 

believability through pseudo-Turing tests [16]: Human 

participants of various skill levels played against either the bot 

or a rank 14 player and, after five games, had to give their 

impression against whom they played. Whether a game was 

played by the bot or the rank 14 player was chosen randomly 

and both used a randomly selected deck from the Hearthstone 

Expert deck pool. Human participants were allowed to use any 

deck and were told that winning was not important for this test 

series, but rather should they aim to find out against whom 

they play, leading to some players actually forging “probing” 

decks where they aimed to confront a potential AI with 

difficult decisions. The result of the believability evaluation is 

shown in Figure 11. Of the 41 games the bot played, it was 

mistaken for a humans in 41% percent of the games, 

indicating that the bot plays believable. 

 
13 http://us.battle.net/hearthstone/en/blog/15955974/hearthside-chat-youre-

better-than-you-think-9-18-2014 
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  Human player identified their actual enemy ... 

Rank Games 

Played 

Bot 

as Bot 

Human 

as Human 

Bot 

as Human 

Human 

as Bot 

25 5 2 0 1 2 

25 5 3 2 0 0 

25 10 2 4 4 0 

20 10 3 2 3 2 

20 5 1 1 3 0 

17 5 1 2 1 1 

14 10 3 2 3 2 

12 10 3 4 2 1 

6 10 6 4 0 0 

Sum 70 24 (34%) 21 (30%) 17 (24%) 8 (11%) 

Figure 11: Results of a Pseudo-Turing test. Each row represents a test series 
with one participant. 

E. Runtime Performance 

Runtime performance was not a primary criterion for 

evaluation, as Hearthstone is turn-based and gives players a lot 

of time to think. The current implementation of the bot in 

VB.Net still has potential for optimization, but already 

performs its complete reasoning in less than 50ms on a 2.5 

GHz core, which is well sufficient for Hearthstone. Many of 

the queries on the semantic structure could be parallelized, of 

which we expect great potential to improve the runtime 

performance by utilizing multiple cores. Another direction we 

are currently investigating is introducing several caches to 

avoid computation of some expensive queries on the semantic 

structures. In particular within the planning rules, when taking 

card candidates of the hostile player’s hand into account, 

many queries could be cached, at least within the current 

Planning Rule: Hearthstone is static and thus the world-state 

will not change during planning. Yet, exploiting the 

declarative nature of how cards are described in the Static 

Knowledge, their side effects could be tracked and further 

delay the cache invalidation even through several turns. In the 

test games of which results are shown in Figure 9, the peak 

memory consumption was 71 MiB, recorded during a 

Planning Rule playing against a Warlock deck which typically 

plays with a large hand size. The average memory 

consumption throughout all games was 55 MiB. The longest 

reasoning time on a single 2.5 GHz core was 47 ms, recorded 

during a game session with a full enemy board and many 

triggered abilities causing chain reactions. The fastest 

reasoning time encountered, typically at the start of a game 

session, was 3 ms. Figure 12 sums up these findings. 

 
Metric Min Max Average 

Memory Usage 21 MiB 73 MiB 55 MiB 

Reasoning Time 3 ms 46 ms 18 ms 

Figure 12: Runtime Performance metrics of 279 test games fielding the 

Symbolic Expert System against the Stock Hearthstone AI. 

 

Throughout the 202 test games the bots performed in the 

MCTS comparison (101 per bot implementation), we also kept 

record of some performance statistics. The MCTS 

implementation used a budget of 10000 simulations, split to 

250 simulations per 40 determinization sets. Hereby, the 

reasoning time of the MCTS was significantly slower than the 

symbolic implementation, but still sufficiently fast for a turn-
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based game such as Hearthstone. Additional optimizations, 

particularly when fusing the trees of several determinization 

sets, could greatly reduce the reasoning time. Details are 

shown in figure 13. 

 
Bot Min Max Average 

Symbolic 

Expert System 
5 ms 67 ms 24 ms 

Monte Carlo 

Tree Search 
257 ms 21050  ms 12088 ms 

Figure 13: Reasoning time metrics for the 202 test games performed in the 

MCTS comparison test. 

VI. CONCLUSION AND OUTLOOK 

We described how semantic structures can be an effective 

representation for a symbolic AI, mapping both static domain 

knowledge and dynamic runtime memories in the same data 

structure. Using a simple reasoning algorithm we were able to 

show a bot for Hearthstone that bases most of its reasoning on 

operations on the semantic structure and a small set of rules. 

In a comparison we could show that such a symbolic agent can 

compete with MCTS for this specific game domain. The 

effectiveness evaluation against the Hearthstone Expert AI and 

Human players showed that the bot can play the game 

sufficiently well with all classes and would probably end up in 

the top half of players if it would participate in the 

Hearthstone online league. The believability evaluation via a 

Pseudo-Turing test showed that the bot plays sufficiently 

human, too. Thus, we conclude that the presented approach 

can be used to implement a good player-level AI, if “good” is 

defined to cover an AI that plays both efficiently and 

believable. 

While this paper followed an implementation of a Symbolic 

AI for Hearthstone, the approach is also applicable for other 

games of the TCG game domain and perhaps even other 

genres. In general, as mentioned above, the approach seems to 

be well suited for game domains in which the game mechanics 

can change significantly at runtime. We have already 

demonstrated an application for the RTS “StarCraft 2”15 [17, 

18], where a symbolic reasoning system derives build items to 

produce from a Static and Dynamic Knowledge Base and a 

collection of rules. The StarCraft 2 implementation is very 

similar, but did not yet do the split between Expert and 

Domain knowledge as explicitly. This is due to the fact that 

the game mechanics of StarCraft 2 are less prone to change 

during a game session and if such changes happen, like an 

upgrade being researched that alters how an ability works, 

they are more predictable than card effects in Hearthstone. 

The StarCraft 2 implementation focused especially on teaming 

the bot up with a human player, thus mapping human 

statements like “I will take care of air defense” on knowledge 

of the bot, interpreting it as Game Mechanics changing. 

Another application of this approach is currently being 

developed for the 4X game Civilization 5 used for an assistant 

AI acting as a governor to which a player can transfer the 

control of a city to. The Civilization 5 version of the bot 

 
15 Blizzard Entertainment, 2010 (http://us.battle.net/sc2/en/) 

comes with another category of rules mapping human 

information, as human and bot cooperation is a vital aspect 

when using the bot to serve as an assistant to the human 

player. 

In the TCG game domain, one of the aspects we didn’t yet 

mention is deck construction. Unlike the runtime reasoning 

presented here, deck construction is highly dependent on the 

“meta game”, thus which cards and strategies are currently 

popular. Thus, it is harder to formulate explicit Static 

Knowledge about this aspect of Hearthstone. We are currently 

working on a deck construction system and reported early 

finding recently [27]. Our overall concept is to integrate deck 

construction and runtime play. We hope to achieve this by 

transferring knowledge on why a specific card was included 

from deck construction to the runtime system. This seems 

relevant as there are many ambiguous cards in Hearthstone 

that can be used in very different ways. 

In terms of runtime reasoning, we hope to increase the 

reasoning speed further. Our plans are to combine the 

symbolic system with MCTS. Here, MCTS could decide 

which cards to play, while the symbolic system selects targets 

for those cards and performs attacks and similar actions. This 

would greatly reduce the branching factor of the resulting 

MCTS tree, as each action now only consists of whether to 

play a card or not, without having to deal with the different 

targets a card could be used at. On the symbolic end, the 

whole reasoning is split into much smaller, more parallelizable 

steps. Our rationale is that a combination with MCTS might 

help the bot in executing moves that require longer-term 

planning. If the symbolic agents become fast enough, they 

might even be suitable for a simulation policy. Combining the 

symbolic AI with other approaches already used in the field 

seems like an interesting research direction to continue this 

work. 
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