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“Life is full of surprises, but never when you need one.”

Calvin / Bill Watterson
Homicidal Psycho Jungle Cat



Abstract

It is widely accepted that performing musicians adjust their technique according to the acoustic
conditions they hear on stage. It is likely that a musician performing in favourable acoustic
conditions will give a higher quality performance. However, preferred conditions for performers
are comparatively less well understood than for audience members. This presents a significant
challenge when attempting to design a successful auditorium. Stage acoustic conditions are
commonly assessed in terms of the overall energy of early reflections, relative to the direct sound,
and reverberation time. These parameters relate to two subjective attributes of high importance
to performers. However, these parameters are independent of the spatial or temporal distribution
of the reflected energy which, in auditorium acoustics, are known to influence the perception of
sound. It is proposed that a similar effect is observed for soloist performers and that these aspects
of the soundfield will influence the perceived quality of the acoustic conditions. This research aims
to observe how the spatial and temporal distribution of early reflections varies for differing stage
enclosures and to determine if these factors influence a soloist’s impression of the stage acoustics.
A detailed acoustic survey of eight concert hall stages has been undertaken to characterise how the
spatio-temporal distribution of early energy varies under different circumstances. This includes
musician related aspects such as position on stage and orientation in addition to venue related
features, such as the geometry of the stage enclosure. Spatial soundfield measurement and
analysis techniques are developed to enable the spatial and temporal characteristics of early
reflections to be observed. A set of objective parameters are developed to formally characterise
these observations. An interactive listening test allows experienced musicians to compare a
series of virtual stage enclosures by playing their instrument. Test subjects rate each hall in
terms of preference and in relation to specific subjective attributes. The listening test uses a
real-time auralisation system to render the acoustic conditions of a concert hall, in controlled
laboratory conditions. This auralisation is based on Spatial Impulse Response Rendering (SIRR)
to accurately render stage acoustic conditions over a loudspeaker array. This research proposes
new methods of measuring and assessing stage acoustic conditions which will aid in the design
of future auditoria. In addition, this research demonstrates the use of more recent spatial audio

techniques in stage acoustic laboratory experiments.
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Plot showing the mean and standard deviation of angular spread of early reflections
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together) . . . . o
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FEach plot shows STeqry measured in octave band frequencies between 125Hz and
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entations. The results shown are for the three down-stage positions measured in

Early Decay Time (EDT) measured at down-stage positions in LRR. EDT is dis-
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Reverberation time (Tsg) measured at down-stage positions in LRR. Tsg is dis-
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Mean and standard deviation of time of arrival of early reflections at down-stage
positions in LRR. Fach plot shows the mean and standard deviation against source
orientation angle. . . . . . . . L e e e e e
3D distribution of STeqriy measured at a stage centre position with source orien-
tations of 0°, 90°, 180°, 270°. Green marker denotes the location of mazimum
STearly and blue marker denotes the minimum. The mazimum ST,qr, n each
plot is very similar to the source orientation. . . . . . . . .. .. ... ...
3D distribution of STeariy measured at a stage right position with source orien-
tations of 0°, 90°, 180°, 270°. Green marker denotes the location of mazimum
STearty and blue marker denotes the minimum. The mazimum STeqry i each
plot is very similar to the source orientation. . . . . . . . ... ... ..
3D distribution of ST.qr1y measured at a stage left position with source orientations
of 0°, 90°, 180°, 270°. Green marker denotes the location of mazimum STeqryy
and blue marker denotes the minimum. The mazimum STeqry 0 each plot is
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Image source plots of impulse responses measured at the down-stage centre position
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6.1(a) shows image of musician in interactive auralisation system constructed by
Gade. 6.1(b) shows systems diagram of system. FEarly reflections were reproduced
with delays and equalised to provide control over frequency content. A reverber-
ation room was used to produce the reverberant decay. Both images from Gade
(1989) . . .
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Chapter 1

Introduction

“A concert hall is the extension of my musical instrument. I always focus my mind on the

audience area and feel how my performance sounds there. (Ob. -A)” (Ueno et al., 2005)

The acoustic conditions experienced by performing musicians can have a significant impact on
how they perform. For some musicians, the acoustics of the venue are of such importance that
it is considered an integral part of their instrument’s sound. Even subconsciously, the on-stage
acoustic conditions can have an observable impact on the musician’s technique (Kalkandjiev
and Weinzierl, 2013, Ueno et al., 2005), influencing their approach to articulation, tempo or
intonation. It follows that the acoustic conditions experienced by the performer can directly
affect the performance as heard by the audience. For the audience to hear a performance at its
best, it is critical that the acoustic conditions experienced by the performer provide an assistive

environment.

However, the preferred acoustic conditions for musicians are currently not well understood which
can make the design of stage enclosures very challenging and often the focus of remedial work in
newly commissioned performance spaces (Kahle, 2013). As a result, musicians are often required

to endure poor acoustic conditions which can adversely affect the quality of their performance.

Therefore, the overriding aim of stage acoustic research is to understand how different aspects of
the acoustic response influence a musician’s subjective impression of a venue. By studying the
relationship between musician preference and objective acoustic parameters, it may be possible
to refine the stage enclosure design to provide a more assistive environment for their performance.

This is the fundamental motivation of this thesis.

Gade’s pioneering work in this field uncovered many essential facets of how musicians perceive
concert hall acoustics (Gade, 1982). Through interviews and laboratory-based listening tests, it
was found that one of the primary concerns of a soloist was the level of support they received
from the hall; simply, how much effort they had to exert to get a sufficient response from the
hall. Gade discovered that the subjective attribute of “support” was linked to the overall energy
of early reflections, expressed in relation to the direct sound. Musicians tended to favour playing

in stage acoustic conditions with higher levels of early reflections. This led to the development

1
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of the Objective Support parameters which remain part of the standardised method of measuring
and assessing concert halls (International Organisation of Standardisation, 2009). Research
by Ueno and Tachibana (2003), also found that factors such as reverberation time, energy of
early reflections and the energy of a late arriving reflection can significantly affect a performer’s

impression of a venue.

Gade also demonstrated that musicians of different instrument families perceive stage acoustic
conditions in different ways (Gade, 1982). It was found that the threshold of perception of early
reflections varied greatly between wind and string instruments. The likely cause of this was
attributed to the difference in how each instrument masks reflections from a particular direction.
Additionally, it was shown that the presence of early reflections could be perceived by musicians
in different ways; where some musicians could detect the presence of reflections via changes in
timbre. This suggests that different musicians performing in the same acoustic conditions may

perceive the space in different ways.

During a performance, musicians experience a high degree of stress where their attention may
shift to other performance-related tasks. For example, the musician may shift their focus to the
physical act of playing their instrument during a challenging passage or listen for a particular
instrument when waiting for a cue. Guthrie (2014) referred to this as the musician’s ‘Cognitive
Load’ which may also affect what aspects of the acoustic conditions are audible to musicians. Due
to these significant masking effects, it is not fully understood how different acoustic conditions
affect a musician’s impression of a space. It is important to fully understand these phenomena

so that the performance space can be designed to assist the musician rather than hinder them.

From an audience perspective, it is widely recognised that the subjective impression of a per-
formance can be influenced by the distribution of early reflections. Their frequency content,
amplitude, temporal and spatial distribution can influence the audience’s perception of envelop-
ment, clarity, loudness and timbre of a performance (Robinson et al., 2013a). It is possible that
the distribution of early reflections received on stage has a similar subjective effect on performing
musicians, however the significant masking properties present during a performance may cause

these effects to be inaudible.

The stage enclosure is largely responsible for providing early reflections which support the efforts
of the musician, however, many musicians refer to an additional feeling of ‘projection’ or ‘bloom’
which arrives from the auditorium (Kahle, 2013). It has also been suggested that the temporal
and spatial distribution of early reflections may have an influence of the perceived ‘quality of
support’ from the stage (Miranda Jofre et al., 2013). While a venue may provide an adequate
level of early energy to support the performer, the delivery of this energy may affect how it is
then perceived. This suggests that the spatial or temporal distribution of early reflections could
be a salient factor related to musician preference. If these are found to be salient factors then

additional acoustic parameters may be required to assess or design future stage enclosures.
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1.1 Hypothesis and aims

This research aims to determine how the spatial or temporal distribution of early reflections
influences a performer’s impression of the stage acoustic conditions. Of specific interest, is
how the distribution of early reflections influences a musician’s subjective impression of the
performance space and how this affects musician preference towards stage acoustic conditions.

The hypothesis that guides this thesis is stated as follows:

In the context of a performing soloist, the preferred acoustic conditions on stage
are strongly dependent on the spatio-temporal distribution of early reflections in

addition to their overall level relative to the direct sound.

In order to prove or disprove this hypothesis, it will be necessary to carry out an interactive lis-
tening test with musicians to observe their subjective reaction in different acoustic environments.
This will be achieved using a novel interactive auralisation system which will allow musicians
to instantaneously compare different acoustic environments in controlled laboratory conditions.
In addition to this, an acoustic survey of local venues will be carried out to observe how the

distribution of early reflections varies on different stages.

This hypothesis is supported by the following work:

1. The creation of a stage acoustic measurement protocol that considers the temporal and

spatial delivery of early reflections.

2. Development of objective acoustic parameters which characterise the spatial and temporal

distribution of early reflections.
3. Evaluation of different stage acoustic conditions in eight performance spaces.

4. The creation of an interactive virtual stage environment to determine the subjective effect

of early reflection distribution.

5. The study of musician responses to controlled acoustic conditions via interactive listening

tests.
Specifically, the listening tests will aim to determine:

e If musician test participants can detect variations in spatial or temporal distribution of

early reflections.

e Which perceptual attributes, related to the stage acoustic conditions, are influenced by

these variations.

e If the spatio-temporal distribution of early reflections influence musician preference pat-

terns towards stage acoustic conditions.
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1.2 Contributions to the field

This work offers a number of novel contributions to the field of stage acoustic research:

An implementation of parametric analysis techniques to observe the spatial and temporal

distribution of early reflections from a measured impulse response.

An objective analysis of how stage acoustic conditions are influenced by hall-related and

musician related variables.

Accurate interactive auralisation of stage acoustic conditions for a soloist in a laboratory

environment.

A deeper understanding of how the distribution of early reflections influences specific sub-

jective attributes for a musician.

1.3 Organisation of thesis

Chapter 2 reviews the fundamental concepts of physical sound propagation in performance
spaces in addition to relevant aspects of auditory perception and psychoacoustics. This chapter

also reviews the current methods of assessing auditorium and stage acoustic conditions.

Chapter 3 describes how acoustic conditions are measured and summarise existing methods for
analysing the properties of stage acoustic conditions. This chapter introduces a novel method of
measuring the stage acoustic conditions such that the temporal and spatial distribution of the
acoustic response can be studied in detail. These methods are used to assess the stage acoustic

conditions of eight performance spaces.

Chapter 4 reviews the most recent methods of analysing the spatial and temporal aspects of
a room acoustic response. It also describes the methods used to evaluate the early reflections

measured on stage.

Chapter 5 presents the analysis of eight concert performance spaces and describes how the

acoustic conditions vary due to aspects of the stage enclosure and the performer.

Chapter 6 introduces the idea of an interactive stage acoustic auralisation system which allows
musicians to perform on virtual stages. This chapter reviews different auralisation methods and

discusses their appropriateness for this research.

Chapter 7 presents the results of two pilot tests that were undertaken during the development
of the interactive auralisation system. These tests provide initial justification to conduct the

main experiment in addition to testing the effectiveness of the auralisation system.

Chapter 8 describes the design of the interactive auralisation system used in this research and

how the system is calibrated and operated.

Chapter 9 describes the main subjective test to determine if the spatio-temporal distribution of

early reflections is audible to a performing musician. Further tests describe how this influences
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the perception of the performance space in terms of known attributes and if there are broad

preferences in terms of optimal stage acoustic conditions.

Chapter 10 summarises the overall findings of this research and discusses future avenues of

research relevant to the field of stage acoustics.






Chapter 2

Fundamentals

When a musician performs on stage, it is widely recognised that they will adjust their technique
to suit a particular venue (Ueno et al., 2007). Some musicians perform this act subconsciously
whereas others will adjust their technique by listening for specific properties of the reflected
sound and reacting accordingly. The process is analogous to a person gradually acquiring a skill
by repetitively making an action with a tool and refining their actions based on their observations
of the consequences (Ueno and Tachibana, 2005). On repetition of the task the person gradually
begins to understand the consequences of various actions or techniques and is able to adapt
the action in subtle ways to achieve the desired outcome. This process, referred to as ‘Tacit
Knowing’ (Ueno and Tachibana, 2005), differs from explicit learning as the human subject may

not be able to describe the process by which the skill was acquired.

From a musician’s perspective, a performance can be viewed as a complex feedback loop where
the physical adjustments to their technique are based on how the musician perceives the direct
sound and reflected sound in relation to their prior experience and training. Figure 2.1 shows a
schematic representing the contributing factors in this process in the context of a solo performer.
It shows how the physical action of playing the musical instrument creates the direct sound
which is heard immediately by the musician. The direct sound propagates out into the concert
hall and is modified and replicated as reflections which propagate back to the musician. The
resulting sound heard by the performer is a summation of the direct sound and reflected sound

from the performance space.

The impression of the direct and reflected sound from the venue are thought to be influenced by
various masking effects. As shown in Figure 2.1, the proximity of the musical instrument may
cause auditory masking of the reflected sound. In addition, the musician may attend to specific
aspects of what they hear, causing other aspects to be cognitively masked. The decision to adjust
their technique is then based upon a comparison of what they hear with previous experience or

musical intent.
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FIGURE 2.1: A flow chart describing how sound the sound generated by a performer is modified

by the concert hall and is heard by the musician. What the musician hears is subject to various

masking phenomena and is interpreted by the auditory system. The musician then decides,

based on previous experience, how to adapt the sound to produce a desired effect. Adapted from
(Ueno and Tachibana, 2005)

It is feasible that the decision-making process varies over time as a musician acclimates to a space
after an exploratory period. In this period, the musician may deliberately exaggerate phrasing
or articulation to excite the venue in different ways, listening to the reaction throughout and

gradually adjusting until they are satisfied.

Overall, this research is concerned primarily with how the stage acoustic response influences the
musician’s impression of the hall. Therefore it is necessary to first review the physical processes
which modify the sound returning from the concert hall and the psychological mechanisms by
which they are interpreted. This chapter will describe the fundamental aspects of each part of
this process, specifically, how sound is generated, how it propagates through the hall and how
it is sensed and perceived by the musician. It will also review basic concepts of auditorium and
stage design and current literature on the perception of acoustic conditions from a performers

point of view. Finally, the existing approaches for evaluating stage enclosures will be reviewed.

2.1 Sound generation and propagation

The most fundamental aspect of musical performance is the generation of sound by the musician’s
instrument and its subsequent propagation through the concert hall. Understanding how the
instrument’s sound is modified by the concert hall is an important factor in determining optimal
conditions for a performer. This section will describe some of the basic principles behind sound

generation and propagation.
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2.1.1 Free-field sound propagation

Sound is generated when mechanical vibrations of an object disturb the particles of the medium
around it. The particle vibrations in the medium can be described either by particle velocity or
by local fluctuations in the pressure of the medium (caused by the associated changes in medium
density). The local increase and decrease of pressure due to sound are referred to as compression
and rarefraction respectively. When sound propagates through a reflection-free area it is termed

as propagating in ‘anechoic’ or ‘free-field’ conditions (Bies and Hansen, 2003).

In free-field conditions, a vibrating point source will radiate sound equally in all directions causing
a pressure wave to propagate out from the source as air particles shift in relation to one another.
The Helmholtz wave equation, derived from Newton’s laws of motion, describes the behaviour
of sound pressure in a fluid medium as a function of time and space. This can be expressed as
the partial differential equation (2.1). This describes the pressure variations in a homogenous
fluid with zero viscosity (Williams, 1999).
2

*p— C%% =0 (2.1)
where V? = (% + 88722 + %) and p(z,y, z,t) is an infinitesimal variation of acoustic pressure
from the equilibrium value. c is equal to the speed of sound in air. The speed of sound in air
varies with aspects such as temperature and humidity. In this thesis, unless otherwise stated,

the speed of sound is assumed to be ¢ = 344ms~!.

Sound intensity describes the mean energy flow of a sound wave that is transported through an
area (Bies and Hansen, 2003). The instantaneous intensity is defined by equation (2.2) where
p(t) is the sound pressure and u(t) is the particle velocity. As the particle velocity is a vector

quantity, the sound intensity also describes the direction of the flow of energy.

I(t) = p(t)u(t) (2.2)

As the pressure wave radiates away from the source, the energy is spread over an increasing
spherical area. This causes the intensity to decrease with the inverse square of the distance from

the sound source, as shown in Figure 2.2.
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FIGURE 2.2: As sound propagates spherically away from a sound source the energy is spread
over an increasing area therefore the intensity reduces with distance from the sound source.
Adapted from (Everest and Pohlmann, 2009)

This is expressed in equation (2.3) which determines the intensity, I, of a sound source radiating
with a sound power, W, measured at a radius r. As the spherically radiating sound wave reaches
a large radius from the sound source, its curvature can be considered to be negligible and thus

the sound wave can be treated as a plane wave.

I = 4WWT2 (2.3)
Sound intensity can also be expressed as a decibel ratio which is convenient given the wide
range of intensities sound can take. For instance, the quietest audible sound (threshold of
hearing) is approximately 10712 /m? whereas a sound loud enough to be painful for a human
is approximately 100WW/m? (Everest and Pohlmann, 2009). It is also the case that humans
perceive the loudness of a sound logarithmically. A 10dB increase in sound intensity level will
be judged as being twice as loud. A doubling of sound intensity level (i.e. +3dB) is often quoted
as a just noticeable increase in loudness. The sound Intensity level, L;, is described by equation

(2.4), where I is 1072W/m? and corresponds to the human threshold of hearing.

Iif) (2.4)

Similarly, the energy output of a sound source can be defined by its sound power level, L,,, as

Li = 10l0g10 (

shown in equation (2.5). The reference, Wy, is also 10712W/m?.

w
L, =10l 2.5
0g10 (Wref> ( )

This quantity defines the energy output regardless of the environment it inhabits. As sound

pressure is proportional to the square of sound intensity, the sound pressure level, L, can also
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be expressed in this way, as shown in equation (2.6) (Howard and Angus, 2001).

2
Lp = 1010910 (g)
Pres (2.6)

= 20[0910( P )
Dref

As sound propagates outward into the concert hall it reduces in intensity due to distance atten-

uation but also due to energy losses related to heat exchanges with the volume of air (Kuttruff,
1979). In general, the attenuation due to air varies with temperature and humidity and is

frequency-dependent, with absorption generally increasing with frequency.

As the distance between the musical instrument and the performer’s ears is typically very small,
the sound pressure level experienced by the musician, from the direct sound alone, will be much
louder than other sounds heard on stage. Musical sounds often produce unweighted sound
pressure levels between 40dB and 100dB (Fletcher and Rossing, 1998).

2.1.2 Sound source spectrum

The sound from musical instruments is often spectrally complex due to the coupling of many
different resonant bodies contributing sinusoidal components of different frequencies to the overall
sound. For instance, a bow drawn across the strings of a violin generates vibrations which travel

into the body and then radiate into the air.

Many tonal musical sounds consist of a series of harmonically related sinusoidal components
referred to as the fundamental and overtones (or harmonics). The frequency and relative ampli-
tude of the harmonics determines the perceived timbre of the instrument and is primarily how
a note of identical pitch played by two different instruments can produce very different sounds
(Fletcher and Rossing, 1998). Noise-like or transient sounds can produce a randomly varying

time domain signal comprised of a large number of non-related harmonics.

Experienced musicians are able to control the relative amplitude of these harmonics through
various physical 