
MaPS: Movement and Planning Support for
Navigation in an Immersive VRML Browser

John D. M. Edwards and Chris Hand

Department of Computer Science
De Montfort University

The Gateway, Leicester, UK
LE1 9BH

jde@tomedii.demon.co.uk cph@dmu.ac.uk

ABSTRACT
This paper describes the design and implementation of the user
interface for a prototype immersive VRML2 browser, with
particular reference to the planning and viewpoint movement
aspects of navigation in the virtual environment.

Rather than being hard-coded in the browser, the user interface
objects are part of the virtual environment itself (i.e. stored in the
VRML scene graph). Advantages of this “first-class user
interface” are described, and implications for an open, extensible
approach to user interface evolution and browser implementation
are considered.

KEYWORDS
VRML2; immersive browser; first-class user interface; navigation
techniques; user interface metaphors.

1. INTRODUCTION

While the VRML specification and the browsers which implement
it have both evolved rapidly over the past couple of years, the 2D
mouse-based interaction techniques typically provided by
browsers are still considered unsatisfactory by many users.
Moreover, when we turn to the problem of creating a browser for
an immersive VRML system these mouse-based techniques are no
longer applicable or desirable. There is therefore a need to
investigate user interface design and implementation for VRML
browsers, and immersive systems in particular. (In this paper the
term “immersive” is used to refer to a system which provides
“sensory immersion”, i.e. uses a head-mounted display with
tracking.)

The interaction tasks which a VRML browser’s user interface
needs to support can be divided into hypermedia tasks (such as
following hyperlinks and placing bookmarks) and virtual
environment (VE) tasks, such as navigation and object
manipulation. This paper concentrates on interaction techniques
which support two aspects of navigation: movement and planning.

The structure of the paper is as follows. Section 2 covers some of
the requirements and problems of using an immersive system and
describes related work. Section 3 then explains what we mean by
a “first-class” user interface and describes the advantages of this
approach. The theoretical background to our work is outlined in
section 4, “Movement and Planning Support”, while the

implementation of these ideas in a prototype immersive VRML2
browser is covered in some detail in section 5. Section 6 briefly
describes some initial evaluations, section 7 discusses future
work, and finally section 8 presents some conclusions, including
comments on VRML2 and possible improvements to the
specification.

2. AN IMMERSIVE INTERFACE

One of the principle aims of this work was to investigate
navigation techniques suitable for use with a VRML2 browser
running on an immersive platform as opposed to a desktop
system. The work described in this paper was carried out using a
Virtuality™ Elysium™ Ultrascaler immersive VR system with V-
Flexor 6 degrees of freedom (DOF) input device and Visette
head-mounted display (HMD), running in stereo at a resolution of
640 × 480 pixels.

A distinguishing attribute of an immersive system is that it
divorces the user’s sensory modalities from the real world, which
renders a large proportion of conventional input-output devices
unusable. Certainly, the wearing of HMDs prevents users from
interacting visually with many real world peripherals, such as
mice and VDUs. An immersive interface must therefore provide a
virtual substitute for these I/O devices if the user is to interact
successfully within the virtual world.

2.1 Related Work
Designers of 3D interfaces have recognised for some time that
creating a one-to-one mapping between a 6-DOF input device and
its representation in the VE has direct benefits in terms of
improved spatial understanding during object manipulation, due
to the natural kinaesthetic correspondence [17] between hand
position and the manipulated object or tool. Projects such as
MIT’s 3-Draw [12], have demonstrated the efffectiveness of
instrumenting familiar tools (such as a clipboard and stylus) with
a 6-DOF tracking device, allowing direct input techniques to be
used. Navigation techniques have also used this approach:
Brook’s “shopping cart metaphor” [2], the Delft Scooter [14] and
Slater’s “virtual treadmill” [13] all provided inherent (and in some
cases active) kinaesthetic feedback.

However, while instrumented “props” [5] are useful for specific
tasks, there is also a requirement for more general purpose
techniques (and, in the case of VRML browsers, for using more

widely-available 3D devices). The solution proposed by Wloka
and Greenfield, known as the Virtual Tricorder [19], uses the
metaphor of a re-configurable tool and again adopts a direct
mapping between input device and its virtual representation. In
this case the representation is a model of the actual ultrasonic 3D
mouse used, with the addition of extras such as “2D anchored
menus” which pop up when required. The Virtual Tricorder was
the initial inspiration for the immersive VRML navigation control
described below.

Another approach which is related to the work described here is
the “world in miniature” (WIM) metaphor [16], an extension of
the world-in-hand technique [18] which provides the user with a
hand-held miniature version of the virtual world. The WIM
technique as described by Stoakley et al allowed for both
navigation and object manipulation, although controlling the scale
of the WIM model was an issue. The WIM technique has also
been used in a collaborative, immersive VRML-based system
implemented by HITL during phase II of their Greenspace project
[9], albeit using a pre-defined model rather than a dynamically
updated representation.

3. BUILDING A FIRST-CLASS
INTERFACE

3.1 Concepts
Perhaps the most straightforward approach to implementing a
browser’s user interface would be to code it as part of the browser
itself, and this has been the case with most, if not all, VRML
browsers to date. However the VRML2 specification, in
conjunction with dynamic routing capabilities such as those of the
Carmel1 graphics kernel [15] used in our implementation, makes
it possible to instantiate the interface components as “first-class”
world objects both in terms of visibility (they could be rendered as
part of the normal scene graph) and connectability (they could be
connected directly to objects in the environment using ROUTEs).
As well as greatly extending the flexibility of the interface and
permitting rapid experimentation through ROUTE editing, this
approach also contributes to the potential longevity of the system,
as it will be largely compatible with other VRML2 products and
developments.

Figure 1 highlights the key differences between a conventional
browser interface and its first-class equivalent. It should be noted
that there is no difference between the scene graph processing
abilities of the two browser applications; the contrast between the
two is based on the fact that one contains a built-in interface,
whereas the other constructs its interface as part of the main scene
graph. The first-class interface can make use of a lightweight
browser application which comprises little more than a scene
graph processor – all of the interface functionality has been
migrated into the screen graph itself.

Figure 1(b) shows that the first-class interface still includes a
direct connection between the browser application and some
“Core” I/O devices. Although it is theoretically possible to build
all of the interface functionality into scene graph nodes, we don’t

1 Developed by Virtuality and Delft University of Technology,
Carmel is an extensible object store which supports VRML 2
node types and routes.

suggest this as a viable proposition. For example, a VR system's
rendering functionality could be built entirely into the behaviour
of a Camera node; however, due to hardware specific issues this
would be unlikely to yield practical levels of performance. It is
therefore acknowledged that it may be necessary to preserve some
core I/O functionality as an integral part of the browser
application. This core functionality will probably correspond to
the baseline requirements of the VRML2 specification.

Scene Graph
World Objects

Scene Graph
World Objects

Interface Objects
Browser Application

Browser Application

I/O Devices Core I/O Devices

I/O Devices

Interface

Scene Graph
Processor

Scene Graph
Processor

World Description
eg. VRML2 file

Interface Description
eg. VRML2 file

World Description
eg. VRML2 file

(a) (b)

Figure 1: Conventional interface (a) and
first-class interface (b)

3.2 Key advantages
The creation of a first-class interface opens up some exciting
possibilities in the field of browser interface design. The key
advantages of this approach are described below.

Portable
Probably the most significant advantage of constructing the
interface within the VRML2 paradigm is that it results in a system
which is essentially portable to other platforms.

Reusable and Compact
By developing self-contained nodes which encapsulate key
behaviours, a first-class interface is able to make use of one of the
key benefits of the object-oriented paradigm: reusability. By
hiding the nodes’ internal workings and providing a carefully-
designed public interface (i.e. a node’s exposed fields) it is more
likely that the node can be successfully connected to other
(possibly third party) nodes. This also leads to a more compact
browser implementation which is faster to develop and simpler to
maintain.

Visible
A user interface (especially an immersive interface) is likely to
require some form of visual representation. A first-class interface
is able to make use of the visualisation functionality already built
into the browser. In the general case there is no reason why a
first-class interface should not make use of any of the modalities
supported by the browser.

There are also situations where aspects of the interface need to be
made visible to the rest of the virtual environment, rather than just
the user. For example, in multi-user environments, the interface is
responsible for generating an avatar which must be visible to
other users. Similarly, if the interface supports the notion of
alternate viewpoints (e.g. map views) it is important that the user's

position is visible. A first-class interface can take advantage of
built-in scene processor functionality to make specific aspects of
the interface visible at no extra cost.

Extensible and Connectable
By removing the interface from the browser application, new
components may be wired into the interface as and when they are
required. VRML2’s inherent network portability suggests that
interface components could be distributed over the Internet and
wired up by users to create custom interfaces. Script node
behaviours should make use of a network portable language, such
as Java, JavaScript or VRMLScript. Using the VRML2 routing
paradigm it is a simple matter to connect both world and interface
objects together in a variety of configurations.

4. MOVEMENT AND PLANNING
SUPPORT

This section describes the theoretical background to the
navigation techniques designed and implemented in our
prototype.

The user’s ability to navigate in a virtual space is affected by the
virtual environment itself and by the user interface.
Environmental aspects (how the space is designed, landmarks and
so on) are provided by objects within the virtual world and are
generally placed there intentionally by its creator. Any aids to
navigation provided directly by the initial environment (before it
has been modified by the user) are, by definition, not within the
control of the user interface, and therefore outside the scope of
this work.

The user interface provides support for the navigational task
independently of the virtual environment. Support techniques
may be divided into two main sub-groups: Viewpoint
Manipulation Tools which contribute to the tactical component of
navigation (Movement), and Navigational Aids, such as maps and
compasses, which assist in the more strategic aspects of
wayfinding (Planning). A navigational user interface should
provide support for both aspects of the navigational task, hence
the acronym MaPS (Movement and Planning support).

Sections 4.1 and 4.2 examine these two aspects of navigation
while section 5 describes the practical implementation of these
ideas.

4.1 Movement
A fundamental requirement for navigation in a virtual
environment is a facility to manipulate the effective viewpoint,
that is, to move. Gale et al [4] note that the acquisition of spatial
knowledge, essential for wayfinding, is primarily based on “direct
environmental experience” which is usually gained via movement.

In considering the many metaphors for viewpoint manipulation, it
is possible to make a further classification based on the effective
frame of reference. Some techniques are analogous to moving a
viewpoint through a world (egocentric), while others allow the
observer to manipulate the world in front of a static viewpoint
(exocentric). In general, navigation through an environment is
associated with an egocentric viewpoint. Examples of egocentric
movement include the “eyeball-in-hand” and “flying vehicle”
metaphors [18].

Movement metaphors may also be classified depending on what
we might call “natural” movement as opposed to “vehicle”
movement. Natural movement is often characterised by a one-to-
one mapping between movement of the input device and its
manifestation in the virtual environment. A tracked head-
mounted display unit represents possibly the most natural of all
viewpoint manipulation techniques, as changes in viewpoint
correspond directly to movement of the user's head. Similarly,
world-in-hand and eyeball-in-hand viewpoint manipulation
techniques also rely on one-to-one mappings between the position
of the input device position and the viewpoint. Vehicles, on the
other hand, tend to utilise more complex mappings between the
input device and the resultant movement in the virtual
environment.

4.2 Planning
In addition to providing the user with the ability to move through
an environment, essentially a tactical exercise, the interface is also
able to provide the user with a set of tools to assist in the strategic
aspects of wayfinding, that is, planning. Trailblazing and the use
of maps are both examples of planning tools for navigation.

4.2.1 Trailblazing
Trailblazing involves leaving physical markers in the environment
as a way of marking or encoding locations. This may add
meaning to the environment, or just make places easier to find in
the future. The markers are similar to simple landmarks, with the
important difference that true landmarks are created by the
designer of the environment, whereas trail marks are created by
users.

Darken and Sibert [3] describe the use of elevated (for visibility)
coloured cubes as visual markers, or “virtual breadcrumbs”, which
may be dropped by the user as a means of assisting navigation.
The mechanism was provided for trail making and a facility
existed for dropping breadcrumbs automatically at a preset
frequency. However, an informal subject evaluation revealed that
users dropped breadcrumbs manually as a way to label the
environment with their own landmarks. Depending on how the
breadcrumbs were dropped they could provide a variety of useful
information, such as marking an area as visited, delineation, and
recording a change in direction

The idea of trailblazing may also be extended to include the
notion of “embodied bookmarks”. Just as a hypertext system
allows a user to record (and return to) a set of HTML document
positions, a VRML browser should allow the user to record and
return to a set of viewpoints. The process is analogous to the
creation of a set of custom hyperlinks, in which case it would
appear logical to embody these bookmarks, just like conventional
hyperlinks. This could be achieved using a trailblazing technique.

4.2.2 Maps
Spatial cognition research identifies two distinct kinds of spatial
knowledge: Route Knowledge enables navigation from point to
point using landmarks, and is based on an egocentric frame of
reference. Survey Knowledge (or map knowledge) on the other
hand enables efficient planning of journeys not previously
encountered, and is based on an exocentric reference frame.

Survey knowledge has been shown to be essential for effective
wayfinding [7], and although it can be derived from extensive
route knowledge, it is available directly from a map. In most
situations, the ability to rapidly obtain survey knowledge makes
maps an invaluable tool for navigation in a real environment and
this is also the case in a virtual environment; as might be
expected, the subjects whom Darken and Sibert provided with a
map showed significant improvements in navigational ability over
those without [3].

The design of maps for virtual environments can draw on real
world map design principles [6]:

1. Two-point theorem: it must be possible for the user to relate
two points on the map with two points in the environment.

2. Alignment principle: the map should be aligned with the
terrain.

3. Forward-up principle: the upward direction on a map
should align with what is in front of the user.

Implicit in these design principles is the requirement that it should
be easy for the user to relate their current view with a position and
orientation on the map. The principles are actually easier to
achieve with a virtual environment, as the map alignment and an
indication of current position can be generated dynamically. The
alignment principle can be modified to suit specific navigational
tasks. Empirical evaluations [3] demonstrate that a view-aligned
map (the map turned with the view) is more effective for
exploration, whereas a terrain-aligned view (the map remained
stationary) maintains a more consistent cognitive map of the
overall environment. There is no reason why this should not be
switchable depending on the search task.

The next section describes the development of a number of new
VRML2 nodes which may be combined to produce a variety of
map views.

5. IMPLEMENTATION

This section describes the implementation of movement and
planning support in the context of an immersive VRML2 browser.

Movement of the viewpoint was supported by a Navigator node,
described in section 5.2. Planning was assisted by a map-type
tool and a trailblazing technique. Both movement and planning
were achieved through a programmable tool similar to the Virtual
Tricorder, which may be easily re-configured to provide many
different navigational aids. Since the main area of focus in our
investigations was this tool and its map modes, the
implementation of these is described in detail in sections 5.1 to
5.7.

A simple trailblazing technique was implemented by using a
simple menu (implemented as an in-built node type) to instruct
the scene graph manager to instantiate a new object just behind
the user’s current position. While this was relatively simple to
implement, a more complete solution would allow the user to
choose between a variety of different objects, thus allowing the
user to add distinct custom landmarks to an environment. Lack of
space precludes any further discussion of the trailblazing tool or
the Menu node.

Push buttons (× 3)

Analogue pressure sensors

Figure 2: V-Flexor 6 DOF Input Device

5.1 VirtualFlexor: An Embodied Input
Device
The Elysium system’s V-Flexor input device (Figure 2) is ideally
suited to the implementation of a “virtual tool” style of control,
through the creation of the VirtualFlexor. The VirtualFlexor is
effectively a virtual model of the real V-flexor, with a flattened
cuboid attached to the top of its handle. As the real device is
moved, so the VirtualFlexor follows. The attachment may be
used as a virtual screen which can act as a focal point within the
immersive interface, for example displaying map views or menu
choices. The VirtualFlexor also serves as a movement tool via the
Navigator node.

A script node was responsible for reading the position and
orientation of the physical device. The translation and orientation
fields of this script node were then routed directly into a VRML2
transform node which contained a shape node defining the
geometry of the VirtualFlexor (Figure 3).

VRML2 Scene Graph

VirtualFlexorFlexor I/O
(Script Node)

Real
Flexor

translation translation

rotationrotation

Figure 3: The VirtualFlexor

(The Flexor-I/O node could be re-used for a variety of tasks. For
example, the interface could adopt the “world in hand” metaphor
simply by sending two ROUTE statements to the kernel.)

Additional input parameters are available from the real V-Flexor
via a four-way analogue pressure sensor placed in the hand grip
and three two-state push buttons situated on top of the device.
These inputs are also made available to the scene graph by the
Flexor I/O node.

5.2 Navigator node
The principle task of the Navigator node is to allow users to
manipulate their effective viewpoint. The outputs of the
Navigator were connected to a flyable platform or “magic carpet”;
by ensuring that the Camera (the user’s viewpoint) and the

VirtualFlexor were members of the platform’s transform, the user
was given the impression of travelling on a virtual vehicle. The
user was therefore able to move their head and hand
independently of the direction of travel. This configuration takes
advantage of the natural constraints afforded by the “cyberspace
metaphor” [18], particularly its ability to orient the user in relation
to the vertical axis. Murta maintains [10] that users’ perceptions
of the vertical axis are critical to their ability to make sense of a
virtual environment.

The Navigator node is essentially a tool for generating geometric
transformations and aims to centralise all of the movement
functionality required by the interface on a single node. The
Navigator is able to encapsulate a number of different mappings
between the input device and the resulting transform dynamics.
Transforms generated by the Navigator are presented as
translation and rotation output fields, which may be routed into
any suitable node; this routing arrangement was chosen to enable
the translation and rotation components of a transformation to be
isolated. Such isolation would not be possible if objects were
required to accumulate transformations from the Navigator via
composition.

The simpler types of navigation, for example walking and flying,
represent a relatively straightforward re-mapping of the inputs
from the V-Flexor and HMD. Point-of-interest navigation [8] and
hyperlinking involve rather more complex algorithms.
Techniques for enacting the following of hyperlinks have been
investigated but not yet implemented (this functionality would
probably be incorporated as part of the Navigator node). Although
this is an important issue for VRML, further discussion of
hyperlinks is outside the scope of this paper.

5.3 TextureCamera Node
The TextureCamera node is based on the standard VRML2
Camera2 node. Whereas the Camera node produces an image on
the main display, be it HMD or VDU, the TextureCamera node
renders its view to a texture (i.e. bitmap) within the environment.
Like the Camera node, the TextureCamera provides parameters
for controlling its transformation and field of view (zoom).

Virtual Flexor
(Transform/Shape Node)

Texture map

TextureCamera
(Transform/Script Node)

• translation
• rotation
• field of view
• texture handle

Figure 4: TextureCamera node

2 As of the final VRML 2.0 specification, this is now known as
Viewpoint.

The destination texture could, of course, exist on any object (or
objects) within the virtual environment. However, for the
purposes of the navigational interface the TextureCamera's view is
rendered onto a screen attached to the VirtualFlexor, as shown in
Figure 4 and Figure 5.

Figure 5: VirtualFlexor Displaying Map View

The implementation of the TextureCamera makes use of an
advanced facility of Virtuality’s 3D graphics hardware and
software, and is effectively coded as a built-in node. It would be
difficult, if not impossible, to produce the same effect using
standard VRML2 script nodes. However, the process of adding
the same functionality directly to a VRML2 browser would be
much simpler, as it would probably only require that the render
destination of the scene be set to a texture map, rather than the
main view. Given that the TextureCamera opens up such a wide
range of possibilities in terms of providing alternate views within
a virtual environment, it would seem reasonable to propose such a
node for consideration in future revisions of the VRML
specification.

5.4 Pointer node
The Pointer node was developed to provide an automatic
orientation mechanism for the TextureCamera node. When
supplied with the absolute translations of source (e.g. the camera)
and target (e.g. the user), the Pointer node is able to point the
target at the source. More precisely, the Pointer node generates a
rotation which aligns the line-of-sight of the source with an
imaginary line running between the co-ordinate origins of the
source and target.

This arrangement leaves one degree of freedom unaccounted for,
namely the rotation of the source around the line-of-sight to the
target. This is accommodated by the addition of a
viewup_rotation field which dictates the orientation of the top of
the view. For example, if the pointer was controlling a camera
positioned above the target, then connecting the target rotation to
the viewup rotation would result in a “view-oriented” map view.

Figure 6 shows how the Pointer could be used to orient a
TextureCamera towards a target in the virtual environment, in this
case the user.

Target

TextureCamera
(Transform/Script Node)

Pointer
(Script Node)

translation

rotation

target_translation

viewup_rotation

rotationrotation

source_translationtranslation

Figure 6: Pointer node

The process of designing this node has suggested a possible
enhancement to the VRML2 specification. In order to
successfully calculate the necessary orientation, the Pointer node
requires the absolute translations of source and target. However,
the VRML2 specification is based on cumulative transformations
and only the relative translation of a given Transform node is
directly available. Provided that the participating nodes are
located at the root level of the scene graph, this presents no
problem, but this is not likely to be always the case.

For example, it would be quite reasonable to want to point a
camera attached to a building at a man on a horse. Unfortunately,
the camera’s translation is (naturally) relative to the building and
the man’s is (naturally) relative to the horse; in short, the Pointer
will not know which way to turn.

It may be possible to calculate absolute transforms from within a
Script node (for example, using VRMLScript), however this is
likely to be quite involved and computationally expensive. Since
any scene graph processor must determine all accumulated
transformations every time the view is rendered, it should present
little overhead to make this information available as EventOut
fields in each Transform node.

For our implementation, the behavioural aspects of the Pointer
node were implemented as a C++ class within the Carmel kernel.
It would be relatively straightforward to implement this
functionality using a portable language such as VRMLScript from
within a VRML2 script node, were it not for the aforementioned
problems with accumulated transforms. An interim solution
would be to ensure that participating nodes are all members of the
root transform.

It is worth noting some other potential applications of the Pointer
node. For example, it could be used in conjunction with the
Navigator node to orient the user towards another object in the
environment, perhaps a hyperlink. Alternatively, a collection of
Pointer nodes could enable the audience of a virtual tennis match
to keep their eyes on the ball.

5.5 Slider node
Another requirement was that the user be given control over the
field of view (zoom) of the camera. However, there was a
fundamental mismatch between the data available from the input
device (two-state buttons) and the analogue value required to
control the zoom.

The Slider node was developed to bridge this gap and its
operation is conceptually similar to a sliding potentiometer, such
as a volume control on a radio.

Slider

min max
out

dec < > inc

divider

from VirtualFlexor
left & right buttons

To TextureCamera
field-of-view

time

Figure 7: Example use of Slider node

The Slider provides real number fields to specify the range of
output values (min, max). It also allows for the number of
divisions within this range to be set as an integer (divider).

The Slider is controlled using three further fields. Slider
operation is synchronised by providing a timing pulse (time).
Every time a "clock pulse" is received, the sliders output (out) is
modified according to values at the Boolean directional inputs
(inc, dec). The Slider is, of course, reusable in any situation
requiring potentiometer-style control.

5.6 User representation
The two-point theorem [1] states that the map reader should be
able to match two points on the map with two points in the
environment. This task is simplified if the user is given some
indication of their position in the environment on the map view.
When generating the map view by means of a camera view it is
necessary to generate a user embodiment or avatar. A large red
arrow was chosen as a short term solution, as this could indicate
both the user’s position and orientation and would be visible from
a distance. One possible enhancement would be to link the arrow
size to the TextureCamera’s field of view, ensuring that the arrow
always appears at an optimal size in the map view.

For certain camera configurations it may be preferable to use a
more sophisticated avatar which closely reflects the user's physical
attributes, possibly using a jointed model of a human body.
However, from large camera ranges (e.g. Map views) such an
embodiment would be too small to be seen.

5.7 A Navigation Metaphor Construction
Kit
By combining the VirtualFlexor, Navigator, TextureCamera and
Pointer nodes in various ways it is possible to generate a variety
of useful configurations which comprise many different
navigational metaphors, described briefly below. Any one of these

configurations can be set up quickly and easily by configuring the
appropriate routes, for example via menus on the VirtualFlexor’s
screen. Another option would be to change the screen from a
flattened square to (say) a cube, providing several surfaces which
could be used to present a subset of these techniques.

Map view (North-aligned). The top edge of the map view will
always be aligned with virtual “North”, so that when the user
turns around, the map will stay still and the user's position
indicator (that is, the avatar) will rotate. The scale and
perspective of the map view may be altered by adjusting the
height of the TextureCamera above the user and its field of
view (possibly via a Slider node).

Map view (View-aligned). This map view utilises the forward-up
equivalence principle [1] to ensure that the upward direction
on the map shows what is in front of the user.

(The North-aligned and View-aligned map views were the main
focus of our initial evaluations.)

Rear-mounted Camera. In this example, the TextureCamera is
positioned above and behind the user. The view is aligned
with the positive vertical axis, as one would normally expect
from a camera view. This choice of view alignment is likely
to contribute to vertical axis awareness [10] and should help
the user to make sense of the view.

Targeting Satellite Camera. This camera may be moved relative
to the user’s position using the functionality provided by the
Navigator node. Wherever it is, it will always point at the
user, with an up-aligned view. It is really just an extension
of the Rear-mounted Camera, which affords the user greater
control over where they position the camera. Obviously,
while the Navigator is connected to the TextureCamera, the
user will have no way of moving themselves.

Autonomous Satellite Camera. A variation on the previous
Targeting Satellite Camera, this camera dispenses with
automatic tracking, instead allowing the user to control its
orientation using Navigator node functionality.

Targeting Drone Camera. This configuration is the same as the
Targeting Satellite Camera but releases the TextureCamera
so that it is free to move independently of the user. Among
other things, this allows it to make sensible use of the
hyperlink capabilities of the Navigator node. For example,
in the case of intra-world links, it may be useful to be able to
send a drone down a hyperlink to stare back at you from the
other end. This may contribute to the user’s ability to form a
cognitive map of the spatial relationships between two
hyperlinks connecting points within the same world.

Autonomous Drone Camera. A variation on the Targeting Drone
Camera, this camera dispenses with automatic tracking
entirely, allowing the user to control its orientation using
Navigator functionality. Unlike the Targeting Drone Camera,
this configuration can also be applied to inter-world
hyperlinking, allowing the user to make a useful
reconnaissance of a remote (and spatially unconnected)
virtual environment.

Eyeball. A variation on the eyeball-in-hand metaphor [2][18], the
camera orientation is linked directly to the orientation of the

VirtualFlexor. In this example, the camera is situated high
above the user. The resulting view would probably be more
useful if the Camera view was diverted to a HUD (head up
display, i.e. superimposed on the graphics display in the
HMD), rather than the VirtualFlexor screen, as the user is
likely to experience difficulties in synchronising view
position and screen position.

Giant. A similar idea to Eyeball, except that the orientation of the
TextureCamera is directly related to the orientation of the
user’s HMD. What this provides, therefore, is the view that
the user would have if they were the same height as the
TextureCamera. This has many similarities to viewpoint
manipulation techniques which allow the user to increase
their size in order to get a map-like view of an environment.
This configuration has the advantage that the user doesn't
need to change size (which could be disconcerting for other
users in the environment). Moreover, both views are
simultaneously visible. It may be beneficial to introduce an
additional transformation into the User-TextureCamera
hierarchy, so that the Giant view can be offset and oriented
slightly towards the ground. The provision of a HUD option
would also be useful.

Rear-view Mirror. This configuration effectively attaches the
TextureCamera directly to the user Camera with a rotational
offset of 180° around its vertical axis. The resulting view
therefore displays the scene exactly opposite to the user’s
main view, giving them the option of “having eyes in the
back of the head”.

Hand-Held Mirror. By using a similar technique to the Rear-
view Mirror, it is possible to turn the VirtualFlexor into a
hand-held mirror. Among other things, the user’s own avatar
may be examined in this mirror. The capacity for self-
examination may assist in the processing of establishing the
user’s presence in the environment, or may be useful in the
growing area of research into the visualisation of body image
in VEs (e.g. [11]).

Magnifying Glass. Almost identical to the hand-held Mirror, but
without the rotational offset, this virtual device mirrors the
operation of a real world magnifying glass, except that by
giving the user control of the field of view (via the Slider)
the device also becomes zoomable. This technique replicates
the functionality of the Virtual Tricorder’s “magic lens” [19].

6. INITIAL EVALUATION

A small number of initial user trials were run to compare the
North-aligned and View-aligned map tools. The scenario used for
testing was a simple maze-running task using a small maze
comprised of cubes, cones and cylinders each of which could
appear at two different heights. Subjects were placed outside a
randomly-generated maze and instructed to first find the centre,
then to find three adjacent short cones, and finally to reach the
entrance/exit once more. Subjects were instructed to perform
these tasks as fast as possible but without crashing into maze
objects. Five subjects were tested with three conditions: no map,
North-aligned map and View-aligned map.

When queried at the end of three trials, all subjects claimed to
prefer the view-aligned map tool as a means of navigation.
Although some subjects found it a useful strategy to plan a route
using the map, and then move it out of the field of view while
moving, others relied very heavily on the map, to the extent that
they neglected to look where they were going, increasing
collisions with the maze. (The cost of concentrating on a map to
the exclusion of the external environment is clearly much less in a
VE than it is, for example, walking down a busy city street.)

Finding the three short cones in the maze required the
interpretation of perspective from the map view, and this was
easily achieved by moving the VirtualFlexor closer to the face to
increase available detail (Figure 8).

Figure 8: Close-up View of Map Showing Perspective

One subject (the only one who was a novice VE user) claimed
that the map view tended to “get in the way”, apparently finding it
difficult to manipulate the V-flexor’s buttons in any orientation
other than directly to the front, and was therefore reluctant to
move the map out of the field of view while moving. This subject
suggested that the map could be fixed to the main view, in which
case it becomes a head-up display. This “degenerate” case could
also be used for non-immersive systems.

7. FUTURE WORK

Future work will involve further investigation of the re-
configurable navigation techniques described in section 5.7, along
with ways of changing the movement metaphor. These are
technically simple, only requiring changes to a few routes, but the
user interface side is less straightforward. For example, our initial
experiments with text-based menus proved problematic, due to the
commonly-experienced difficulty of reading text in a HMD. A
single tool overloaded with many functions is likely to become
difficult to control, so it may be fruitful to use alternate modalities
such as speech in this control task.

From an architectural point of view, the VRML community’s
discussions of issues such as external software interfaces have
been progressing in parallel with this project, and the outcome of
these will be taken into consideration in planning future work.

The notion of alternate viewpoints, particularly those outlined in
the description of the Satellite and Drone varieties of Camera,
presents the possibility of “recursive immersion”. It would be
interesting to examine the effects of these scenarios on the user’s
feeling of presence. For example, where would a user flying a
Drone Camera perceive their presence to be?

8. CONCLUSIONS

The VirtualFlexor described in this paper may be considered a
descendent of Wloka’s Virtual Tricorder and the WIM technique
of Stoakley et al. However, unlike the WIM model, the
VirtualFlexor may be easily scaled, or reconfigured into a
different tool entirely. Unlike the Tricorder, the VirtualFlexor
provides no object manipulation functions, but provides a wider
range of navigation support tools.

Our experiences with VRML2 during implementation uncovered
some ways in which the specification could be improved or
augmented:

• The advantages of providing absolute positional information
from Transform nodes (section 5.4)

• New node type: TextureCamera (section 5.3).

• In order to allow sensible progressive parsing, any fields
which affect a node's children should be specified before
those children.

The VirtualFlexor is a good example of the benefits of developing
first-class interface objects, as the application of this methodology
resulted in a simplified implementation task. To have
implemented the VirtualFlexor node as a part of the browser
application would have required hard-coding its appearance and
behaviour into the browser code, resulting in a less flexible
solution.

Finally, the use of portable first-class user interface objects would
give all VRML users the option to become creators of user
interfaces. We would hope that making the user interface open
and extensible would accelerate the evolution of user interfaces
for VRML browsers (and 3D interaction techniques in general),
provide a natural platform for prototyping and experimentation,
and contribute further to the sharing of results and experience
within the VRML community.

9. ACKNOWLEDGEMENTS

The authors would like to thank Paul Beskeen, Paul Cameron,
Howell Istance, Richard Jacklin, Arnold Paalder, John Rowland,
Pieter Stappers, Hugh Steele and Anna R. Thomas for their help
and support during this project.

The prototype made use of vrml2parser.zip, supplied to the
VRML community by Silicon Graphics, Inc.

This work was supported by Virtuality Ltd. “Virtuality”,
“Elysium”, “V-Flexor” and “Visette” are trademarks of Virtuality
Group plc.

REFERENCES
[1] Boff, K.R. and Lincoln, J.E. Engineering Data

Compendium: Human Perception and Performance.
Wright-Patterson AFB, Ohio, USA, 1988.

[2] Brooks, F. P. “Grasping Reality Through Illusion –
Interactive Graphics Serving Science”. Proceedings of
CHI’88, May 1988. pp1-11.

[3] Darken, R. and Sibert, J. “A Toolset for Navigation in
Virtual Environments”. ACM User Interface Software and
Technology, 1993, pp157-165.

[4] Gale, N., Golledge, R., Pellegrino, J.W. and Doherty, S.
“The Acquisition and Integration of Route Knowledge in
an Unfamiliar Neighbourhood”, Journal of Environmental
Psychology, 10, (1990), pp3-25.

[5] Hinckley, K., Pausch, R., Goble, J. C. and Kassell, N. F.
“Passive Real-World Interface Props for Neurosurgical
Visualization”. Proceedings of CHI’94, April 1994.
pp452-458.

[6] Levine, M., Jankovic, I. N. and Palij, M. “Principles of
Spatial Problem Solving”. Journal of Experimental
Psychology: General, 111(2): 157-175. (1982)

[7] Lynch, K. The Image of the City. Cambridge: MIT Press,
1960.

[8] Mackinlay, J. D., Card, S. K., and Robertson, G. “Rapid
Controlled Movement through a Virtual 3D Workspace”,
Computer Graphics 24(4), August 1990.

[9] Mandeville, J., Davidson, J., Campbell, D., Dahl, A.,
Schwartz, P. and Furness, T. “A Shared Virtual
Environment for Architectural Design Review”.
Proceedings of Collaborative Virtual Environments ’96,
University of Nottingham, UK, 19-20 September 1996.

[10] Murta, A. “Vertical Axis Awareness in 3D
Environments”. Proceedings of the Framework for
Immersive Virtual Environments ’95, London, UK, 18-19
December 1995, pp.169-176

[11] Riva, G., Bolzoni, M. and Melis, L. “Effects of
Immersive Virtual Reality on Body Representations”.
Proceedings of the 3rd UK VR-SIG Conference, De
Montfort University, Leicester, 3rd July 1996. pp121-
132.

[12] Sachs, E., Roberts, A. and Stoops, D. “3-Draw: A Tool
for Designing 3-D Shapes”. IEEE Computer Graphics
and Applications, November 1991, pp18-26.

[13] Slater, M., Steed, A. and Usoh, M. “The Virtual
Treadmill: A Naturalistic Metaphor for Navigation in
Immersive Virtual Environments”. Proceedings of the
Eurographics Workshop on Virtual Reality, Barcelona,
Sept 1993. pp71-83.

[14] Smets, G. J. F., Stappers, P. J., Overbeeke, K. J. and van
der Mast, C. “Designing in Virtual Reality: Perception-
Action Coupling and Affordances”. In K. Carr and R.
England (Eds), Simulated and Virtual Realities: Elements
of Perception, Taylor & Francis, 1995. pp189-208.

 [15] Steele, H. “Re: Dynamic Routes in VRML 2” Message
posted to VRML mailing list, 6th August 1996. <URL:
http://vag.vrml.org/www-vrml/archives/vrml.9608.gz>

 [16] Stoakley, R., Conway, M.J., and Pausch, R. “Virtual
Reality on a WIM: Interactive worlds in miniature”.
Proceedings of CHI ’95, March 1995.

 [17] Ware, C. “Using Hand Position for Virtual Object
Placement”. The Visual Computer 6:245-253, 1990.

 [18] Ware, C. and Osborne, S. (1990). “Exploration and
Virtual Camera Control in Virtual Three Dimensional
Environments”. Proceedings of the 1990 Symposium on
Interactive 3D Graphics (Snowbird, Utah, March 1990).
In Computer Graphics 24(2): 175-183.

 [19] Wloka, M.M. and Greenfield, E. “The Virtual Tricorder”.
Technical Report CS-95-05, Department of Computer
Science, Brown University, Providence RI, USA, March
1995.

