Improving Accessibility to Human Anatomical Museum Specimens for Teaching, Through Use of Modern Digitisation Techniques

Ferguson E 1, Khayruddeen L2, Livingstone D2
1 Anatomy Facility, School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
2 School of Simulation and Visualisation, Glasgow School of Art, Glasgow, United Kingdom

Introduction

Anatomical specimens provide an invaluable resource for teaching, however, many of these specimens are fragile and irreplaceable. Modern visualisation techniques may aid in the preservation and safekeeping of such delicate materials while also facilitating wider access for teaching.

This project aimed to digitise human juvenile skulls from the University of Glasgow’s, Museum of Anatomy, with a view to creating an interactive 3D application (app) to aid student learning of the growth and development of the juvenile craniofacial skeleton.

Museum Specimens

Two fetal skeletons aged 16 and 40 weeks in utero respectively (Figure 1) were selected for digitisation. A Canon EOS 5D camera was used to take > 50 photos of each specimen in 360 degrees, to capture the full skull, into 3D models using Agisoft Photoscan software.

Creating the Application

Step 1: Photogrammetry – generating 3D models from digital photos. Multiple photos aligned and stitched together.

Step 2: Retopologizing – reducing polygon count & optimising model performance within app.


Testing the App

A cohort of anatomy summer school students (n=12), trialled the juvenile skull app. Feedback was collected through an anonymous questionnaire, using a 5-point Likert scale and open text comments.

Results

Overall, feedback was positive. Participants found the app easy to use and did not feel that they would require technical support or prior knowledge to use it (Figure 2).

The majority of students (n=11) indicated that the application helped them to learn more about the human skull (x̄ = 4.58, σ = 0.67) and most participants (n=10) positively rated the use of 3D models in understanding the position and structure of anatomical features on the juvenile skull (Figure 3; x̄ = 4.33, σ = 0.78).

Discussion & Conclusion

Advances in technology mean that it is now possible to digitise and create accurate models of anatomical museum specimens. Moreover, specimens can be enhanced for teaching, by the creation of interactive applications including features such as identifying labels and markers, which may improve student learning.

This application is a first positive step in providing an alternative method for accessing anatomy specimens. However, further research is required to assess if this type of application is a suitable substitute for physical specimens in teaching anatomy, or if it is merely a supplemental tool.

References

- Autodesk, Inc., New York, USA Autodesk, 2017
- Unity Technologies, California, USA (UnityTechnologies, 2017) Available at: unity3d.com