Sun Spaces, Monitored & Predicted Performance and Lessons to Improve Design Practice

Dr Gráinne McGill
Researcher, Mackintosh Environmental Architecture Research Unit, Glasgow School of Art
Study was commissioned by the Housing Association to:

- provide real data on performance in practice
- To help determine the causes of any performance gaps identified and identify remedial actions
- To use knowledge and insight to inform current and future development plans

Design intent:

- Harnessing passive and active solar gain
- Double-height sunspaces to act as thermal buffer
- Highly insulated, airtight building fabric
Case Studies

- **Passive Stack Ventilation**
- **Airtightness 5 - 6 m³/h/m²**
- **Sunspace to the back**
- **N/S or NE/SW orientation**
- **107 – 108 m²**

Site A

<table>
<thead>
<tr>
<th>Code</th>
<th>Vent.</th>
<th>Site</th>
<th>Typology</th>
<th>Orientation</th>
<th>Floor area</th>
<th>Occupancy</th>
<th>Home occupied</th>
<th>Airtightness (m³/h/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1A</td>
<td>Passive</td>
<td>A</td>
<td>Semi-detached</td>
<td>N/S</td>
<td>108 m²</td>
<td>2A, 3C</td>
<td>Evenings & weekends</td>
<td>4.76</td>
</tr>
<tr>
<td>PS2A</td>
<td>Stack</td>
<td>A</td>
<td>Semi-detached</td>
<td>NE/SW</td>
<td>107 m²</td>
<td>2A, 5C</td>
<td>All day</td>
<td>5.60</td>
</tr>
<tr>
<td>ME1B</td>
<td>dMEV</td>
<td>B</td>
<td>Semi-detached</td>
<td>N/S</td>
<td>107 m²</td>
<td>2A, 2C</td>
<td>Evenings & weekends</td>
<td>5.99</td>
</tr>
<tr>
<td>ME2B</td>
<td>dMEV</td>
<td>B</td>
<td>Semi-detached</td>
<td>E/W</td>
<td>88 m²</td>
<td>3A</td>
<td>Evenings & weekends</td>
<td>5.42</td>
</tr>
</tbody>
</table>

- **Mechanical Extract Ventilation**
- **Airtightness 5 - 6 m³/h/m²**
- **Sunspace to the front**
- **N/S or E/W orientation**
- **88 – 107 m²**

Site B
Methodology

Stage One
- 27 Households (75% response rate)
- Design & construction drawings review
- Household survey
- Identified suitable dwellings for detailed monitoring stages

Stage Two
- 4 dwellings
- Ventilation performance evaluation
- Seasonal analysis
 - Indoor environmental conditions
 - Occupant diary and interviews
 - Energy consumption
- Measured airflow rates
- Status of ventilation system
- Positioning of trickle vents
- Ventilation noise levels (selected dwellings)

Stage Three
- 1-4 dwellings
- Fabric performance testing
- Further detailed monitoring
- Selected dwellings
- Airtightness testing
- Smoke testing
- U-value testing
- Thermography survey
- Volatile Organic Compounds
- PM2.5 and PM10
- Formaldehyde

DATA SOURCES
- SAP documents
- Floor plans and sections
- Site plans
- Ventilation information
- Construction information

DATA COLLECTED
- Occupant satisfaction with indoor environmental quality
- Occupant behaviour
- Awareness and understanding of ventilation strategies
- Understanding and use of sunspace
- Temperature, RH, CO2 levels
- Summer and winter/spring seasons
- Occupancy levels, activities and behaviour
- Occupant awareness and understanding
- Energy consumption
- Ambient conditions
Monitoring
Sunspace design

Site A

- Double glazed metal insulated frame system
- Glazed door and opening window
- Tiled floor and open joint timber decking
- Wall between building and sunspace is timber studwork faced on both sides with lightweight plasterboard.

Site B
Air supply to sunspace
Insights from the household survey

- Overall, high level of satisfaction with IAQ (93%), natural light levels (100%), indoor temperature (96%) and noise levels (96%) in the home.

- High frequency of reported window opening, particularly during the summer where 67% of households reported opening windows constantly.

- 15% of households experienced problems with overheating in the sunroom.

- 33% of households stated that they didn’t like the sunspaces (due to lack of privacy, functionality of the space / temperature control, or concerns with condensation / dampness).
Insights from the household survey

- High frequency of drying clothes indoors reported

- Clothes typically dried in:
 - Kitchen (40%)
 - Sun space (26%)
 - Living room (24%)

- 41% of households reported noticing condensation, mould or mildew on the walls or surfaces in the sunspace.
How are the sunspaces used by the occupants?

Responses (summer)

- All the time (33%)
- Sitting in (33%)
- Never / don’t use (26%)
- It is too hot (15%)

- “Too hot to be used and it's at the front of the house, so not practical to sit in”
- “It's nice and quiet, a lot for sitting out”
- “Nothing now - may use it for storing garden furniture”
- “As a dining room”
- “I don't use it. Grandkids use as a small playroom but it is like a sauna”
- “Sitting in summer on windy days”

Responses (winter)

- All the time (15%)
- Never / don’t use (44%)
- It is too cold (26%)

- “Not really as it's too cold”
- “Kids that visit play there”
- “As a coffee room”
- “I don't use it. In the winter, the window freezes.”
- “All the time for sitting in”
- “Don't use it - too cold.”
Environmental monitoring - Spring temperatures

Temperature levels (1st-7th April) : House 1A

Temperature levels (1st-7th April) : House 1B

Temperature levels (1st-7th April) : House 2A

Temperature levels (1st-7th April) : House 2B
Environmental monitoring – summer temperatures

Temperature levels (18-22nd Aug) : House 1A
- Kitchen
- Main bedroom with sunspace
- Bedroom north facing
- Sunspace (downstairs)

Temperature levels (18-22nd Aug) : House 1B
- Kitchen
- Main bedroom (north)
- Bedroom with south sunroom
- Sunroom (downstairs)

Temperature levels (20-26th Aug) : House 1A
- Kitchen
- Living room
- Main bedroom with sunspace
- Bedroom south facing
- Sunspace (upstairs)

Temperature levels (20-26th Aug) : House 1B
- Kitchen
- Living room
- Main bedroom east sunspace
- Bedroom west facing
- Upstairs sunspace
- Downstairs sunspace

Temperature levels (20-26th Aug) : House 2A
- Kitchen
- Living room
- Main bedroom with sunroom
- Bedroom north facing
- Sunroom (upstairs)

Temperature levels (20-26th Aug) : House 2B
- Kitchen
- Living room
- Main bedroom east sunspace
- Bedroom west facing
- Upstairs sunspace
- Downstairs sunspace
Environmental monitoring – spring humidity levels

Relative humidity levels (1st-7th April) : House 1A

- Kitchen
- Boys bedroom (south facing)
- Main bed (south facing w sun room)
- Upstairs sun space

Relative humidity levels (1st-7th April) : House 1B

- Kitchen
- Bedroom (south)- with sun space
- North bedroom
- Upstairs sunroom

Relative humidity levels (1st-7th April) : House 2A

- Kitchen
- Boys bed (North facing)
- Downstairs sun space

Relative humidity levels (1st-7th April) : House 2B

- Kitchen
- Main bed- east with sun space
- Sun space (upstairs)

Relative humidity levels (1st-7th April) : House 2B

- Kitchen
- Living room
- West facing bedroom
- Sun space (downstairs)
Environmental monitoring – summer humidity levels

Relative humidity levels (18-22nd Aug) : House 1A

Relative humidity levels (20-26th Aug) : House 1B

Relative humidity levels (20-26th Aug) : House 2A

Relative humidity levels (20-26th Aug) : House 2B
Temperature differences

- Peak sunspace temp > 50°C observed in 3 homes (spring and summer)
- Some evidence of overheating, particularly in bedroom adjacent to sunspace (2A)
- Key differences observed between East and West facing sunspaces

<table>
<thead>
<tr>
<th>House No</th>
<th>Room</th>
<th>Spring (March – April)</th>
<th>Summer (August – September)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temp (°C)</td>
<td>RH (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max Min Mean</td>
<td>Max Min Mean</td>
</tr>
<tr>
<td>PS1A</td>
<td>Downstairs sunspace (S)</td>
<td>57 4 17</td>
<td>96 7 48</td>
</tr>
<tr>
<td></td>
<td>Adjacent kitchen</td>
<td>28 18 23</td>
<td>65 28 43</td>
</tr>
<tr>
<td></td>
<td>Upstairs sunspace (S)</td>
<td>55 4 19</td>
<td>89 12 44</td>
</tr>
<tr>
<td></td>
<td>Adjacent bedroom</td>
<td>34 17 23</td>
<td>67 23 45</td>
</tr>
<tr>
<td>PS2A</td>
<td>Downstairs sunspace (SW)</td>
<td>44 7 16</td>
<td>79 13 52</td>
</tr>
<tr>
<td></td>
<td>Adjacent kitchen</td>
<td>24 13 19</td>
<td>68 24 47</td>
</tr>
<tr>
<td></td>
<td>Upstairs sunspace (SW)</td>
<td>52 7 17</td>
<td>75 14 48</td>
</tr>
<tr>
<td></td>
<td>Adjacent bedroom</td>
<td>48 17 21</td>
<td>64 14 47</td>
</tr>
<tr>
<td>ME1B</td>
<td>Downstairs sunspace (S)</td>
<td>33 7 19</td>
<td>69 14 42</td>
</tr>
<tr>
<td></td>
<td>Adjacent living room</td>
<td>26 13 20</td>
<td>58 20 40</td>
</tr>
<tr>
<td></td>
<td>Upstairs sunspace (S)</td>
<td>52 5 20</td>
<td>72 5 41</td>
</tr>
<tr>
<td></td>
<td>Adjacent bedroom</td>
<td>25 16 20</td>
<td>53 19 38</td>
</tr>
<tr>
<td>ME2B</td>
<td>Downstairs sunspace (E)</td>
<td>29 7 14</td>
<td>89 24 61</td>
</tr>
<tr>
<td></td>
<td>Adjacent living room</td>
<td>25 15 20</td>
<td>71 28 48</td>
</tr>
<tr>
<td></td>
<td>Upstairs sunspace (E)</td>
<td>39 6 16</td>
<td>88 17 59</td>
</tr>
<tr>
<td></td>
<td>Adjacent bedroom</td>
<td>26 14 20</td>
<td>66 30 50</td>
</tr>
</tbody>
</table>
Sunspace airtightness

- Airtightness tests performed in all 4 homes
- Tests performed with sunroom doors opened and closed
- Tests revealed air infiltration through the sunspaces
- The results suggest sunspaces are not that airtight in some homes and there is uncontrolled leakage
- This may have an impact on the low night time temperatures observed in these spaces

<table>
<thead>
<tr>
<th>House No.</th>
<th>Excluding sunroom</th>
<th>Including sunroom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average air permeability (m³/h/m²)</td>
<td>Average Air Changes per Hour (ACH)</td>
</tr>
<tr>
<td>PS1A</td>
<td>4.76</td>
<td>4.51</td>
</tr>
<tr>
<td>PS2A</td>
<td>5.60</td>
<td>5.31</td>
</tr>
<tr>
<td>ME1B</td>
<td>5.99</td>
<td>5.69</td>
</tr>
<tr>
<td>ME2B</td>
<td>5.42</td>
<td>5.50</td>
</tr>
</tbody>
</table>
Summary of key findings

- While the Scottish climate suggests using solar energy is not the most feasible option, results suggest sunspaces can be particularly beneficial in Spring / Autumn seasons.

- The key however is occupant understanding and interaction with the sunspace.

- As spaces unheated, may not be considered as habitable rooms, however can provide additional living space when conditions allow.

- Raises concerns regarding occupant expectations, which may result in complaints.

- This is supported by reports of overheating in sunspace.

- In theory, thermally isolated sunspaces can be used as heat collector, providing heat for adjacent rooms.

- Since sunspaces not included in main building fabric, temp & RH swings expected.

- A quarter of homes use sunspace for drying clothes—good idea providing ventilation is sufficient.

- Reports of condensation and dampness (supported by measurements). RH levels highest in East facing sunspace.

- Attributed to: i) temp swings overnight, ii) warm air escaping & condensing on cold sunspace surfaces, iii) drying clothes in sunspace (if inadequately ventilated).
Recommendations

- Methods to purge vent the sunspaces while maintaining security during hot spells
- Greater consideration should be given to air pathways between the sunspaces and the heated interior
- Summer shading (integral) recommended to tackle overheating
- Insulated blinds could be used to reduce back losses at night and prevent overheating during peak summer months
- To maximise preheat ventilation of air, an integrated air extract and supply system could be installed to help distribute solar gain throughout the house
- Residents should be advised that sunspace can be used to dry clothes on sunny day when vents open, however the moisture source should be removed at night
Thank you

Dr Gráinne McGill
Mackintosh Environmental Architecture Research Unit (MEARU)
Glasgow School of Art

g.mcgill@gsa.ac.uk