Storyboards

- Discuss
- Rapid
- Chaos
- Organic

Sketchbooks and Samples 2
Work Process Sketchbooks

Chapter 5

Sketchbooks and Samples 3

Initial Experiments

With Rice Paper, Sweet Rice Paper, & Latex

Rice Paper

Handmade rice paper can be made by soaking rice, then drying and brushing a smooth finish.

Rice paper can be used with rice paper, and is ideal for collage and paper projects.

Sweet Rice Paper

Sweet rice paper is made by boiling rice in a pot, then drying it and brushing a smooth finish.

Sweet rice paper is also suitable for rice paper, and is ideal for collage and paper projects.

Latex

Latex is a type of rice paper that is used for collage and paper projects.

Plaster, Ceramics & Clay

The use of plaster, ceramics, and clay in the process of sketching and samples can be a great addition to the process.

Sketchbooks and Samples 3
Traditional Japanese

Yakata Factory Visit

I visited the traditional kagura (dance) factory in Hamamatsu in April 2002. They print cotton fabrics with traditional motifs to commemorate special occasions. They will use a very primitive form of screen print, a stencil is used as a printing frame. They print one layer at a time stacking them as they go.

If it is then coated with a sand-like substance to set the paste. A substance is applied on specific areas of the fabric and the paper is peeled through the layers. The fabric is then washed and pressed repeatedly on a machine. The fabrics are then rolled into bales when dried.

Japanese Textiles

Factory Visit

I visited the textile factory in Hamamatsu, Japan in April 2002. Hamamatsu is a few hours’ drive from Yokohama. This factory manufactures several assortments of traditional Japanese garments, including kimonos, yukata, and senbei. The fabrics are made with high-quality materials, including silk and cotton. The designs are often inspired by traditional kagura dance and other cultural elements. The factory also produces scented fabrics, which are popular among consumers. These fabrics are used for creating unique products, such as scarves and accessories.
Practical Experiments

Proving successful to test concept using practical experiments. Crossing different
sections by changing materials and checking the design's reaction. The technique
was applied to the post made from Corian™. This worked well as a result. Which all the
samples will be compared to.

Despite the possible deflections in the form of thin lines because they are the natural structures
to control without too many waste and able to worry about. We start the process by
pattern cutting the design, then we model adapting them casting blocks to form paper
patterns, which we then lead onto actual fabric and cut. The final toile used paper stocking
2.5 mm of fabric. With a single layer of fabric.

Toile 2

Toile 2 is made of fibre glass, in the same design as toile 1, the square sections were
changed to a single square. Instead of it, this is a panel. With the fibre glass
composites. The straight side of the skin has been given a big 3:1 ratio. This is
done by scoring the pattern and expanding it. Due to the thickness of the fibre glass, toile 1, it's very
expensive fibre glass. Today's textiles to be more expensive, working with the fibre glass. Instead, what I see,
I started to have a design reaction to the fibre glass. Instead of using all materials,
from suppliers and the ceramic department. We were allotted to work with artists and
designs.

The structural aspect of the work works better in this toile than the previous one. This
could be because of the thickness of the material. The way in which the square sections
were changed to a single square; all of it was repositioned. The ceramics
are seen to be rippled in at 90 degrees at the top. Thus effecting the material to be more
3:1 effect. Fibres from the material started to disintegrate very quickly when heated,
causing fibres to be flying everywhere thus causing skin irritation.

Using fibre glass to create the toile. Because of the ceramic clay that I will like to use
will require the material to be baked in the kiln. And fibre glass can withstand these
500 degrees.
Low Temperature Ceramic Material

Experiment with items as it has a low melting temperature of just over 100 degrees. Drawn on the back which turned the glow green they look on together with the idea glass. The thin glass should have been burnt around the edge of the frame, then keep turning until it’s colour. The second frame was treated at the lowest temperature and worked well with the materials used to test ways to enhance the outer aesthetics of the samples.

CAMOUFLAGE

Keeping in line with the theme of ‘cover up’ and ‘camouflage’, I will be exploring the possibility of using army camouflage prints on the designs.

- Started by an American artist by the name of Abbott Thayer in the 1890’s.
- Camouflage is used to ‘hide’ the wearer and blend him into the background.
- Camouflage print is similar in concept to Cubism (2-dimensional images that are broken up)
- A good camouflage print will need to be able to function in various light conditions. A high contrast within the pattern will enable the fabric to do that.

Possible to develop personal camouflage print derived from other prints.
Sketchbooks and Samples 9
Chapter 5

Sketchbooks and Samples 13
WAX SHOES

- Working with existing molds from previous shoe art project (or take)
 - Molds to be soaked with water for about 20 minutes so until the molds stop bubbling in the water
 - Oiling waxed for the use in the molds. When a shoe is molten, it means that the shoe mold is
 - Place wax into the pot. Using 2 parts of paraffin wax is to 1 part of polyurethane wax.
 - Paraffin wax is strong but brittle. To soften the paraffin wax a flexible, a mix of both waxes will ensure a strong and flexible wax
 - To melt the wax, the wax is placed in a pot. A lower safety, the pot is
 - The shoe mold can be used for three parts. When using the mold is heated
 - The wax must cool in three parts. After cooling the mold was

(Sample 2) Shoe was placed into the mold. Left the wax to set and then slowly for about 6-8 minutes. The wax was then poured back into

(Sample 3) Shoe molds in cold water to pull the shoe to solidity quickly. The mold walls taken apart and the shoe walls removed. The front definition of the shoe was not very good, as if it was very thin and not precise. This could be because the shoe did not come in contact with the mold with the shoe.

Placing the molds into cold water to solidify the wax is a compulsory step within the process. Thus this step will not be described again for the process description of the rest of the samples.
Sketchbooks and Samples 15
Sketchbooks and Samples 16
The text content is too small and blurred to be transcribed accurately.
Work Process Sketchbooks

Chapter 5

Sketchbooks and Samples 19