3D PRINTED LIVER MODEL FOR PREOPERATIVE PLANNING OF PARTIAL HEPATECTOMY

Madurska M¹, Poyade M³, Eason D², Rea P⁴, Watson A¹

Department of General Surgery, Raigmore Hospital, Inverness ¹; Department of Radiology, Raigmore Hospital, Inverness ²; Digital Design Studio, Glasgow School of Art ³; School of Life Sciences, University of Glasgow ⁴

Background
Liver resection is the only curative treatment option for colorectal metastases to the liver. High complication and cancer recurrence rates dictate the need for adequate preoperative planning. 3D printing technology has been gaining momentum in the recent years and shows potential in optimising preoperative anatomical planning for hepatectomy.

Aim
To create a graspable, 3D printed model of a liver based on patient’s own radiology data to aid in preoperative planning of partial hepatectomy.

Methods
1. MRI liver + CT angio data of patient diagnosed with a resectable primary cancer of liver obtained

2. Manual Segmentation and automatic surface extraction using Amira visualisation software

3. Mesh editing of extracted surfaces in a 3ds Max design software to overcome data errors and artifacts

4. Conversion to .STL format

5. 3D printing and post manufacturing processing

Results
• Graspable 3D models in two different materials
• Good anatomical detail
• Representation of spatial relationship between tumour and surrounding structures
• Allows manipulation and exploration from various angles

Conclusion
• Graspable, patient specific 3D printed model possible
• Can provides accurate visualisation of anatomical structures and their spatial relationship
• Has a potential in surgical rehearsal and could improve planning of resection planes
• Exploration of adequate imaging techniques, liver specific volumetric software and segmentation algorithms needed to optimise manufacturing time and process as well as minimise artefacts and overcome the need for mesh editing