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ABSTRACT 

The primary aim of this study is to evaluate the effectiveness of a Virtual 

Reality (VR)-simulated system in training fine motor skills that can be transferred to the 

performance of manual tasks in the real world. The VR system presented in this thesis 

enables training following fundamental methods such as part-task and whole-task 

training, in realistic simulations which are enhanced through haptic interaction. A 

fundamental advantage of using virtual reality in training is the ability to provide 

specific types of augmented feedback which cannot be provided in the real world.  

The work presented in this thesis fits within the scope of ManuVAR (Manual 

work support throughout system lifecycle by exploiting Virtual and Augmented 

Reality), a European Union (EU) funded Seventh framework programme project which, 

among other things, aimed to support motor skill training in high value high knowledge 

manual work by using Virtual Reality technologies. A case study in industrial 

maintenance is presented: the metallographic replica, a nondestructive inspection 

technique that requires fine grinding and polishing of the inspected area. The motor 

skills required for the performance of these tasks must be particularly accurate. 

However, those motor skills consist of a tacit knowledge which is hard to transfer from 

experts to trainees. 

This thesis focuses on the design and the evaluation of a VR training system 

which aims to supplement the motor skill training traditionally carried out for the 

performance of fine grinding and polishing tasks. The VR training system was designed 

on the basis of functional and customer requirement analyses which enabled defining 

the functionalities that allow solving the issues that arise when training in the real 

world.  

Two experimental studies were designed to investigate whether a training 

program inspired by part-task and whole-task training methods, along with the 

provision of augmented feedback, enabled training the motor skills that are relevant for 

the performance of fine grinding and polishing tasks. The first experimental study 

explored the effectiveness of part-task training on the performance of a polishing task in 

a virtual environment. The second study evaluated the effectiveness of the complete 

training program for both tasks and investigated the capability of the VR training 

system to discriminate between several levels of expertise. 
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The outcomes of the experimental studies show the effectiveness of the training 

carried out on the VR training system, showing meaningful accuracy improvements 

throughout the performance of motor skills. This proves the internal validity of the 

proposed training. Moreover, the construct validity of the system is also suggested 

through the discrimination between expert and non-expert operators. On the basis of 

these findings, the external validity of the VR training system to train the fine motor 

skills that are relevant for the performance of fine grinding and polishing tasks in real 

operating environments can be established.  

This work supports the hypothesis that VR enhanced with haptic force feedback 

can be useful for training fine motor skills, complementing the traditional training, 

which is carried out in real operating environments. 
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RESUMEN 

El objetivo principal de este estudio es evaluar la eficacia de un sistema de 

entrenamiento de Realidad Virtual en el adiestramiento de habilidades motoras finas, 

transferibles al desempeño de tareas manuales en el mundo real. Este sistema permite 

ejercitar siguiendo métodos fundamentales de entrenamiento como el método analítico 

(part-task training en inglés) y el método global (whole-task training en inglés), a 

través de simulaciones realistas que incluyen la interacción háptica. Una de las 

principales ventajas del entrenamiento en sistemas de Realidad Virtual como el que se 

presenta en esta tesis  es la posibilidad de suministrar una retroalimentación aumentada 

que no puede ser proporcionada en entornos reales. 

El trabajo presentado en esta tesis se inscribe en el ámbito de ManuVAR 

(Manual work support throughout system lifecycle by exploiting Virtual and 

Augmented Reality), un proyecto europeo del 7º programa Marco, que, entre otras 

cosas, tiene por objetivo fomentar el entrenamiento de habilidades motoras finas en el 

trabajo manual de alta cualificación y de alto valor, mediante el uso de la Realidad 

Virtual.  

El término Realidad Virtual se refiere tradicionalmente a una interfaz 

informática que proporciona unas simulaciones gráficas interactivas e inmersivas, 

permitiendo que un usuario tenga la sensación de estar perceptualmente involucrado en 

un entorno virtual. Con frecuencia se ha empleado para apoyar la formación de 

habilidades motoras y de procedimiento en campos de la cirugía y de la industria.  

Este trabajo presenta un caso de uso en el mantenimiento industrial: la réplica 

metalográfica, una técnica de inspección no destructiva que permite reproducir la 

topografía de la superficie de un material sobre una fina película de plástico como si 

fuera un negativo de la misma. El proceso de realización de la réplica metalográfica 

resulta adecuado para la obtención de reproducciones de la microestructura en campo y 

su posterior análisis en el laboratorio. La obtención de la réplica metalográfica requiere 

la preparación previa de la superficie de los materiales que se tiene previsto 

inspeccionar. El objetivo es eliminar las escamas de óxido e impurezas, con el fin de 

revelar la microestructura de la superficie del material libre de deformaciones, arañazos 

y otros defectos que pueden alterar la calidad de la réplica. Esta fase de preparación 

consiste en una serie de procesos abrasivos que se llevan a cabo a través de varias tareas 
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de desbaste grueso y fino y de pulido así como de un tratamiento químico. Esta tesis se 

centra tan sólo en la realización de tareas de desbaste fino y de pulido en el contexto 

previamente explicado.  

La realización de una tarea de desbaste fino permite eliminar las capas de óxido 

residual de la superficie del material inspeccionado utilizando una herramienta rotativa 

de precisión a la que se le acoplan discos de lija de diámetro pequeño de distinta 

granulometría. La orientación de la herramienta al aplicarse sobre la superficie del 

material debe modificarse 90 grados en comparación con la tarea precedente de 

desbaste fino. Por otra parte, la realización de una tarea de pulido permite alisar 

mecánicamente la superficie del material inspeccionado utilizando la misma 

herramienta rotativa de precisión equipada con paños de pulido a los que se les aplica 

una pequeña cantidad de pasta de diamante. La granulometría de la pasta de diamante 

que se aplica va disminuyendo a medida que se repita la tarea de pulido. El objetivo es 

obtener una superficie especular totalmente libre de rayas. Las habilidades motoras que 

se necesitan para la ejecución de dichas tareas deben ser particularmente finas.  

La enseñanza de dichas tareas se produce típicamente bajo la supervisión de un 

experto en metalurgia que previamente ha llevado a cabo demostraciones prácticas y ha 

proporcionado directrices verbales acerca de las características de los movimientos a 

realizar. Mientras el alumno ejercita una tarea, el experto a veces destaca los errores de 

movimiento cometidos en forma de comentarios. Sin embargo, debido a la naturaleza 

de las tareas de desbaste fino y de pulido que impiden la observación de la superficie 

del material mientras se están llevando a cabo, el experto no puede proporcionar 

información acerca del estado de cumplimiento de la tarea. Este tipo de 

retroalimentación solo puede ser facilitada en cuanto la tarea haya sido completada. 

Además, algunas de las habilidades motoras que se requieren en ambas tareas, tales 

como la aplicación de una fuerza y una inclinación adecuada de la herramienta sobre la 

superficie del material inspeccionado, son difíciles de evaluar con exactitud. Dichas 

habilidades constituyen un conocimiento tácito que es difícilmente transferible de los 

expertos a los alumnos mediante directrices verbales. Por lo tanto, el experto puede 

difícilmente proporcionar una retroalimentación precisa al alumno. 

En esta tesis se propone que el uso de las tecnologías de Realidad Virtual 

permite resolver algunos de los problemas que surgen durante el entrenamiento 
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convencional en tareas de desbaste fino y de pulido. Estudios previos han demostrado 

que la Realidad Virtual permite:  

1. La evaluación del cumplimiento de los objetivos de la tarea y de las 

habilidades motoras ejercitadas de una manera objetiva. 

2. El uso de métodos fundamentales de entrenamiento de habilidades 

motoras que difícilmente se pueden implementar en el entorno real. 

3. El suministro de información aumentada precisa que no puede ser 

facilitada en el mundo real.  

4. La simulación realista de modelos físicos de interacción. 

Esta tesis se centra en el diseño y la evaluación de un sistema de entrenamiento 

de Realidad Virtual que tiene por objetivo reforzar el adiestramiento que 

tradicionalmente se lleva a cabo para el desarrollo de las habilidades motoras finas 

necesarias durante la realización de trabajos de desbaste fino y de pulido. El estudio se 

centra en las habilidades motoras finas de fuerza aplicada y de inclinación de una 

herramienta de trabajo sobre la superficie de un material.   

 
Diseño y desarrollo de un sistema de entrenamiento en Realidad Virtual 

 

El sistema de entrenamiento fue diseñado basándose en el análisis de requisitos 

funcionales y de usuario, permitiendo definir las funcionalidades que solucionan los 

problemas que surgen durante el entrenamiento en el mundo real. El desarrollo 

resultante propone, junto con el sistema de entrenamiento de Realidad Virtual, un 

conjunto de ítems que permiten la elaboración de unos programas de entrenamiento de 

manera flexible.  

El programa de entrenamiento permite parametrizar el adiestramiento que se 

lleva a cabo en el sistema de Realidad Virtual, con el objetivo de  ejercitar las 

habilidades motoras de fuerza aplicada y de inclinación de la herramienta siguiendo 

métodos fundamentales de entrenamiento como el método analítico y el método global. 

El método analítico de entrenamiento permite ejercitar las habilidades motoras que 

componen una tarea de manera independiente y conjunta. Este método se basa en 

primer lugar en la descomposición de una tarea en un sub-conjuntos de componentes 

con el fin de practicar estos elementos de forma independiente. Una revisión de la 

literatura científica ha permitido identificar varias técnicas de descomposición:  



x 

 

1. La segmentación, que consiste en separar habilidades motoras que suelen 

realizarse de manera secuencial. 

2. El fraccionamiento, que consiste en separar habilidades motoras que se 

suelen realizar conjuntamente.  

3. La simplificación, que consiste en actuar sobre una característica de una 

habilidad motora con el fin de facilitar su ejecución.  

El método analítico de entrenamiento también se caracteriza por la manera con 

la cual las habilidades motoras aisladas o simplificadas según una de las técnicas de 

descomposición presentadas se recombinan con el fin de poder ser ejercitadas 

conjuntamente permitiendo así la reconstrucción de la tarea global. Tres métodos de 

recombinación destacan en la literatura:  

1. El método analítico-global, que permite entrenar cada habilidad motora 

de manera independiente y una vez la ejecución es lo bastante fina, se 

reconstruye la tarea global con el fin de ser ejercitada. Este método es 

apropiado para habilidades motoras organizadas de manera sequencial. 

2. El método analítico progresivo permite en primer lugar practicar dos 

habilidades motoras de forma independiente que luego se asocian con el 

fin de ser ejercitadas conjuntamente. Cuando el rendimiento se vuelve 

óptimo, se entrena una nueva habilidad aparte y luego se añade a la 

asociación de habilidades existentes. De esta manera, la tarea global se 

reconstruye de manera gradual incluyendo nuevas habilidades motoras. 

Se considera que este método de recombinación permite una mejor 

conprensión de las habilidades motoras que componen la tarea. Este 

método se considera apropriado para ejercitar habilidades motoras que se 

suelen realizar de manera concurente en la tarea global. 

3. El método analítico repetitivo permite ejercitar una primera habilidad 

motora de manera independiente. En cuanto el rendimiento de dicha 

habilidad se vuelve óptimo, se le añade una segunda habilidad, luego una 

tercera y así sucesivamente, con el fin de practicar el nuevo conjunto 

hasta que la tarea global esté completamente reconstruída. Al igual que 

el método analítico progresivo, este método permite una mejor 

comprensión de las habilidades motoras que componen la tarea global. 
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Sin embargo, este método es más apropriado para ejercitar aquellas 

habilidades motoras cuyos componentes son dependientes de otras. Por 

ejemplo, para aprender a tocar el piano, se ejercita en un primer lugar 

con una mano, luego se añade la otra mano y al final se puede hacer uso 

de los pedales.    

Por otra parte, el método global permite ejercitar una tarea tal y como se haría 

en un entorno real.  

Asimismo, un programa de entrenamiento permite gestionar el suministro de 

retroalimentación aumentada a lo largo del proceso de adiestramiento. La información 

proporcionada puede ser relativa a la evaluación del cumplimiento de los objetivos de la 

tarea o al rendimiento, es decir, a la medida en que las habilidades motoras que se 

requieren en dicha tarea se realizan con éxito. La literatura científica hace referencia a 

la retroalimentación aumentada que proporciona información acerca del cumplimiento 

de los objetivos de la tarea como conocimiento de los resultados (Knowledge of Results 

(KR) en inglés). Por otra parte, se refiere a la retroalimentación aumentada que informa 

acerca de la realización de las habilidades motoras como conocimiento del rendimiento 

(Knowledge of Performance (KP) en ingles). Estas retroalimentaciones pueden ser en 

tiempo real y terminales en cual caso se proporciona al final de la tarea.  

A lo largo del entrenamiento siguiendo el método analítico, se puede emplear un 

conjunto de indicadores visuales y auditivos que proporcionan una retroalimentación 

aumentada en forma de conocimiento del rendimiento y de los resultados en tiempo real 

así como de  conocimiento de los resultados de manera terminal. El sistema de Realidad 

Virtual permite además favorecer el aprendizaje durante el entrenamiento con el método 

global, utilizando un indicador visual en forma de mapa de color que proporciona 

conocimiento de los resultados en tiempo real.  

El desarrollo presentado en esta tesis también incluye un modelo de interacción 

háptica que permite la simulación de las sensaciones intrínsecas resultantes a la 

manipulación de una herramienta rotativa de precisión real sobre la superficie de un 

material. También ha sido implementado en el sistema de entrenamiento de Realidad 

Virtual un modelo matemático, desarrollado con el fin de apoyar la simulación de la 

interacción de la herramienta sobre la superficie del material inspeccionado. Dichos 

modelos se han  desarrollado y verificado de manera heurística. Dos expertos en la 

realización de la réplica metalográfica, provenientes de la empresa madrileña Tecnatom 



xii 

 

S.A., una empresa de ingeniería que presta servicios de mantenimiento a plantas 

industriales y químicas, han participado en la elaboración de dichos modelos.         

 

Evaluación del sistema de entrenamiento en Realidad Virtual 

 

Se diseñaron dos estudios experimentales con el fin de investigar si un programa 

de entrenamiento inspirado en un adiestramiento que sigue los métodos analítico y 

global, junto con el suministro de información aumentada, permite entrenar algunas de 

las habilidades motoras finas que se requieren en las tareas de desbaste fino y de pulido.  

 

Estudio experimental 1 

 

El primer estudio experimental explora la eficacia del entrenamiento siguiendo 

el método analítico en el desempeño de una tarea de pulido en un entorno virtual. Para 

este estudio experimental, se formularon dos hipótesis experimentales:  

1. El método analítico de entrenamiento permite al alumno ser más eficaz 

en la realización de las habilidades motoras que se requiren en una tarea 

de pulido tales como la inclinación de la herramienta y la fuerza que se 

aplica sobre la superficie del material inspeccionado.  

2. El método analítico de entrenamiento permite transferir estas  

habilidades motoras al desempeño de una tarea completa de pulido en un 

entorno virtual. 

El experimento fue realizado con un total de 30 sujetos (14 hombres, 16 

mujeres). Todos eran estudiantes o personal de servicio de la Universidad de 

Nottingham (Reino Unido), y sus edades estaban comprendidas entre 18 y 65 años 

(Media = 30,21, SD = 2,85). Ninguno de ellos presentaba defecto visual no corregido o 

problema fisiológico en al brazo o antebrazo. Todos los participantes eran diestros 

excepto uno, y eran novatos en la manipulación de herramientas eléctrica así como de 

dispositivos hápticos.  La participación en el experimento se hizo de manera voluntaria.  

Los sujetos se sentaron delante de una pantalla LCD bidimensional de gran 

tamaño con la mirada a la altura del centro del monitor. Un dispositivo háptico del tipo 

Phantom Desktop se encontraba delante de ellos posicionado en medio del ancho del 



xiii 

 

monitor. Este dispositivo les permitía interactuar sobre un área de inspección que se 

encuentra sobre una tubería industrial simulada en un entorno de Realidad Virtual, a 

través de una herramienta rotativa de precisión virtual. La herramienta estaba simulada 

visualmente y mediante el dispositivo háptico. Varios sonidos de entornos industriales 

así como de dicha herramienta en funcionamiento se reprodujeron durante la realización 

del estudio experimental. 

El experimento se compone de una fase de familiarización con la tecnología 

háptica, una fase de entrenamiento siguiendo el método analítico y de una fase de 

evaluación durante la cual los sujetos intentaban llevar a cabo una tarea de pulido en el 

área de inspección. En esta última fase, se hizo uso de un ejercicio de entrenamiento  

siguiendo el método global.  

Por una parte, el método analítico propone entrenar las habilidades de fuerza y 

de inclinación de manera independiente y conjunta a través de una serie de ítems. 

Durante este entrenamiento, se le pidió al sujeto que tratase de mantener de manera 

continua una habilidad individual o bien un conjunto de habilidades motoras entrenadas 

dentro de unos rangos durante un tiempo de 15 segundos. Se suministraba información 

aumentada en forma de conocimiento del rendimiento en tiempo real durante la 

realización de cada ítem con el fin de facilitar el desarrollo de estas habilidades motoras 

finas. También se proporcionaba información aumentada (conocimiento terminal de los 

resultados) al final de cada ítem. Por otra parte, el método global permite realizar una 

tarea de pulido tal y como se hace en el mundo real. Aquí se añadió información 

aumentada que permitía ir conociendo los resultados en tiempo real; en concreto, un 

mapa de color que indica el ratio de cumplimento de la tarea en cada punto del área 

inspeccionado. Se utilizó un rango de colores que abarcaba desde el verde intenso, para 

indicar un cumplimento completo, hasta el rojo vivo, para una tarea no empezada. En 

medio de este rango, se observan matices de naranja y amarillo para señalar el estado 

inacabado de la tarea. 

El estudio sigue un diseño entre-sujetos. Se repartieron los participantes de 

manera aleatoria en tres grupos. Cada grupo estaba asignado a una condición única de 

entrenamiento: “Full Training” (FT), “Haptic familiarization Training” (HT) y 

“Control Training” (CT). Cada condición incluye una fase de familiarización a la 

tecnología háptica, una fase de adiestramiento y una fase final de evaluación. Antes de 

cada fase, el sujeto recibe unas explicaciones verbales, textuales y gráficas acerca del 
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objetivo de la fase, de la información que se le presenta en la pantalla y de las fuerzas 

que genera el dispositivo háptico.  

Los sujetos que pertenecían al grupo FT primero llevaron a cabo unos ejercicios 

de familiarización, y luego el entrenamiento siguiendo el método analítico. Este 

entrenamiento se compone de diez ejercicios organizados en 4 ítems de 60 segundos 

cada uno. Con el fin de hacer la práctica más factible al principio, la componente de 

movimiento se quitó durante los cinco primeros ejercicios. Sin embargo, para que la 

dificultad del entramiento sea más equilibrada, una vez que las habilidades motoras se 

han consolidado, dicha componente se reincorpora en los ejercicios 6 a 10. Primero, se 

sugirieron tres patrones de movimientos a través de los ejercicios 6 a 8; posteriormente 

los sujetos eran libres de escoger el patrón de movimiento que más les convenía. 

En cada ítem, el sujeto debía mantener de manera continua las habilidades 

motoras entrenadas dentro unos rangos durante un tiempo de 15 segundos. Estos rangos 

incluyen una inclinación de la herramienta virtual entre 0º y 10º, y una fuerza aplicada 

entre 1N y 5.3N. En el ítem 1, se entrenaba únicamente la inclinación de la herramienta 

mientras que en el ítem 2, se ejercitaba la fuerza que se aplicaba de manera 

independiente. En el ítem 3, ambas habilidades motoras se practicaban de forma 

simultánea. En estos tres ítems, se suministró información aumentada en tiempo real en 

forma de conocimiento del rendimiento, que indicaba el valor de las habilidades 

ejercitadas con respeto a los rangos, y de conocimiento de los resultados, que consistía 

en el tiempo restante para cumplir el objetivo del ítem. El ítem 4 era idéntico al ítem 3 

pero la información aumentada en forma de conocimiento del rendimiento no se 

proporcionaba. 

Al igual que los sujetos que pertenecían al grupo FT, los de grupo HT primero 

llevaron a cabo unos ejercicios de familiarización. Sin embargo, ellos no fueron 

adiestrados físicamente siguiendo el método analítico sino que vieron una película que 

les enseñaba una captura de pantalla durante una sesión de entrenamiento llevada a cabo 

por un usuario experto.  

Los sujetos del grupo CT no fueron familiarizados con la manipulación háptica 

sino que vieron una película de un experto llevando a cabo los ejercicios de 

familiarización. Tampoco recibieron entrenamiento físico, sino que vieron el mismo 

vídeo de entrenamiento que los sujetos del grupo HT.  
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Finalmente, todos los sujetos llevaron a cabo a una tarea de pulido simulada en 

un entorno virtual con la ayuda de información aumentada de tipo conocimiento de los 

resultados en tiempo real, en forma de un mapa de color posicionado por encima del 

área de inspección y magnificado en una ventana localizada a la derecha de la pantalla. 

Esta evaluación permite valorar el efecto de la condición de entrenamiento siguiendo el 

método analítico sobre la realización de las habilidades motoras que se requieren en una 

tarea de pulido. 

Durante la fase final de evaluación, se midieron el rendimiento en la realización 

de la tarea de pulido y la precisión en la realización de las habilidades motoras de fuerza 

y de inclinación. También, se pidió a los sujetos valorar una serie de puntos y dar su 

opinión acerca de su condición de entrenamiento, y de las simulaciones gráficas y 

hápticas, entre otras cosas. 

Se realizó un análisis estadístico (ANOVA) de las mediciones de rendimiento y 

de precisión. Los resultados indican que los sujetos que fueron asignados la condición 

de entrenamiento FT resultaron significativamente mejores que los otros sujetos. 

Dichos sujetos fueron capaces de alcanzar un grado de cumplimiento de la tarea de 

pulido significativamente más alto. Se encontraron diferencias significativas en cuanto 

a la precisión de las habilidades motoras ejercitadas, aunque solo se encontró una 

diferencia marginalmente significativa entre los sujetos de FT y CT en cuanto a la 

precisión de la inclinación de la herramienta. Por otra parte, se realizo un análisis de 

tipo no paramétrico (Kruskal-Wallis H-Test) de las valoraciones proporcionadas, que 

demostró una diferencia significativa entre los sujetos de FT y los de HT en cuanto a la 

facilidad de la interacción háptica, la percepción del rendimiento y la percepción de la 

eficacia del entrenamiento. Sin embargo no se encontraron diferencias entre los sujetos 

de los grupos FT y CT y tampoco entre HT y CT.  

Se realizaron también un análisis de los comentarios siguiendo una metodología 

de clasificación de contenido en temas, “Theme-Based Content Analysis” (TBCA). El 

análisis de aquellos comentarios sugiere la complejidad de llevar a cabo las habilidades 

motoras de fuerza aplicada y de inclinación de la herramienta en ausencia de 

entrenamiento físico previo con el método analítico.  

Estos resultados sugieren la eficacia del entrenamiento siguiendo el método 

analítico para apoyar al desarrollo de habilidades motoras finas tales como la fuerza 

aplicada y la inclinación de la herramienta sobre la superficie del material y la 
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transferencia a una tarea simulada de pulido. Sin embargo, el vídeo asociado a la fase 

de familiarización a la tecnología háptica en la condición de entrenamiento CT parece 

tener un efecto leve sobre el aprendizaje de la inclinación de la herramienta. Aunque es 

necesaria más investigación para determinar con mayor exactitud el efecto de aquel 

vídeo.  

 
Estudio experimental 2 

 

El segundo estudio experimental evalúa la efectividad de todo el programa de 

entrenamiento para ambas tareas, e investiga la capacidad del sistema para diferenciar 

entre varios niveles de experiencia. Este estudio experimental se llevó a cabo en las 

instalaciones de Tecnatom S.A. en San Sebastián de los Reyes (Spain), dentro del 

ámbito de la fase de demostración del proyecto europeo ManuVAR. Seis técnicos no 

expertos (1 mujer y 5 hombres) con edad incluida entre 30 y 55 años, acostumbrados a 

manipular herramientas eléctricas, participaron en el estudio. Ninguno de ellos tenía 

conocimientos previos de manipulación con dispositivos hápticos. Aquellos sujetos se 

repartieron de manera aleatoria en dos grupos. A cada grupo se le asignó una tarea de 

desbaste fino o de pulido. También dos expertos (hombres) en reproducción de la 

técnica de replica metalográfica de edad 31 y 35 años estuvieron involucrados en el 

proceso de evaluación.      

Este estudio experimental estuvo compuesto de dos experimentos. El primer 

experimento evalúa la eficacia del entrenamiento siguiendo el método analítico para 

tareas de desbaste fino y de pulido. Para este experimento, se planteó la hipótesis de que 

el método analítico de entrenamiento, además de permitir  al alumno ser más eficaz en 

la realización de las habilidades motoras finas que se requieren en una tarea de pulido 

como se ha demostrado en el primer estudio experimental presentado en esta tesis, 

también sirve en el caso de una tarea de desbaste fino. El segundo experimento 

investiga la eficacia del entrenamiento siguiendo el método global y examina la 

capacidad del sistema para diferenciar entre expertos y no expertos. Para este 

experimento, se formularon dos hipótesis:  

1. El método global de entrenamiento lleva de manera efectiva a una 

mejoría de rendimiento en la realización de unas tareas de desbaste fino 

y de pulido.   
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2. Las simulaciones de tareas de desbaste fino y de pulido propuestas en el 

entrenamiento con el método global proporcionan en una representación 

realista del trabajo en el mundo real permitiendo distinguir entre 

differentes niveles de experiencias acquiridos en el mundo real. 

En ambos experimentos, cada sujeto se colocaba de pie enfrente de una gran 

pantalla tridimensional a través de la cual se podía visualizar el entorno virtual relativo 

al entrenamiento con los métodos analítico y global. Los sujetos llevaban gafas de 

visión estereoscópica pasiva que les permitía percibir la profundidad en dicho entorno. 

Los mecanismos de cambio de punto de vista estaban implementados en la simulación 

para evitar que la visualización tridimensional sufriera distorsiones. Para ello se hizo 

uso de unos sensores reflectantes de luz infrarroja, montados sobre las gafas. Se rastreó 

la posición de dichos sensores utilizando un conjunto de cámaras infrarrojas repartidas 

alrededor de la sala de experimentación. Un dispositivo háptico del tipo Phantom 

Desktop se dispuso delante de pantalla, elevado de tal manera que el espacio de 

manipulación en el mundo real cuadrara con el espacio de trabajo en el entorno virtual.  

Este dispositivo permitía controlar en posición y orientación una herramienta rotativa 

de precisión virtual con el fin de interactuar sobre un área de inspección que se 

encontraba en el lateral de una tubería industrial simulada en un entorno de Realidad 

Virtual. Al igual que en el primer estudio experimental, varios sonidos de entornos 

industriales así como de la herramienta en funcionamiento se reprodujeron durante la 

realización de las tareas. 

 

Experimento 1: Evaluación del entrenamiento con el método analítico 

En el primer experimento, los sujetos de cada grupo llevaron a cabo una fase de 

pre-evaluación, una fase de adiestramiento siguiendo el método analítico y finalmente 

una fase de post-evaluación. La fase de pre-evaluación se compone de 6 ejercicios 

durante los cuales se evaluaron las habilidades motoras de fuerza aplicada y de 

inclinación de la herramienta sobre la superficie del material. El entrenamiento fue 

reducido, por falta de tiempo para realizar un estudio más completo, a dos ejercicios 

compuestos de 4 ítems cada uno. Al igual que en el primer estudio experimental 

propuesto en esta tesis, cada ítem permitía ejercitar independientemente o 

conjuntamente las habilidades motoras de fuerza aplicada y de inclinación de la 

herramienta. Se le pedía al sujeto que intentase mantener la o las habilidades ejercitadas 
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dentro de unos rangos propios a la tarea que le estaba asignada de manera continua por 

un periodo de tiempo de 10 segundos. Estos rangos incluían una inclinación entre 75º y 

90º, y una fuerza entre 1N y 5N para una tarea de desbaste fino y de 0º hasta 20º y 1N a 

5N para una tarea de pulido. Los ítems se presentaron al igual que en el primer estudio 

experimental. También se suministraba información aumentada en forma de 

conocimiento del rendimiento para apoyar al desarrollo de dichas habilidades motoras 

durante los tres primeros ítems y en forma de conocimiento de los resultados durante y 

después de cada ítem. 

Finalmente, los sujetos llevaron a cabo una fase de post-evaluación de igual 

diseño que la fase de pre-evaluación. Durante ambas fases, se midieron el numero de 

ítems correctamente cumplidos así como el tiempo de cumplimento con el fin de 

subrayar el efecto del entrenamiento con el método analítico para ambas tareas. 

También se recopilaron las impresiones de los sujetos mediante cuestiones abiertas y 

cerradas con respuestas tipo Likert.  

Los resultados de aquel experimento señalan que el entrenamiento con el 

método analítico permite a los sujetos cumplir todos los ítems en la fase de post-

evaluación con un tiempo medio mejorado de manera relevante. La hipótesis inicial 

queda entonces verificada. Además, todos los sujetos han valorado positivamente la 

retroalimentación aumentada en forma de conocimiento del rendimiento que informa 

del valor de las habilidades motoras finas ejercitadas, que se suministró en tiempo real a 

través de unos indicadores gráficos así como al entrenamiento en general. Sin embargo, 

se ha observado que el realismo de los entornos virtuales en cuanto a grafismo y 

precisión en la interacción háptica podrían ser mejoradas.   

 
Experimento 2: Evaluación del entrenamiento con el método global 

En el segundo experimento, se mantuvo la repartición de los sujetos en sus 

respectivos grupos y se incluyeron a los dos expertos en el diseño experimental.  

En un primer lugar, se investigó la eficacia del entrenamiento con el método 

global para apoyar el aprendizaje a través de la realización de unas tareas de desbaste 

fino y de pulido. En primer lugar, los sujetos no expertos llevaron a cabo una breve 

tarea de familiarización seguida de una fase de pre-evaluación de 3 minutos. Durante 

esta fase, se le pidió a los sujetos que realizaran la tarea que les había sido asignada al 

principio del estudio experimental. Posteriormente los sujetos ensayaban la realización 
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de dicha tarea a través de dos ejercicios de tres minutos cada uno. Adicionalmente, se 

podía suministrar el mapa de color, bajo petición, durante 10 segundos seguidos.  

Finalmente, los sujetos llevaron a cabo una fase de post-evaluación diseñada de 

igual manera que la fase de pre-evaluación. En ambas fases, se midió el nivel de 

cumplimiento de la tarea asociada a cada sujeto con el fin de destacar la eficacia de 

aquel entrenamiento. 

Los  resultados ponen de manifiesto la tendencia general a la mejora del 

rendimiento después después del entrenamiento con el método global. Aunque, las 

mejoras son leves en el caso de la tarea de desbaste fino, el rendimiento de los 

aprendices en general tiende a mejorar. Sin embargo, basándose sobre trabajos previos, 

se puede esperar una mejoría más relevante en ambas tareas con un tiempo de 

entrenamiento más largo.  En este caso, se puede considerar que la hipótesis inicial se 

ha verificado.  

En un segundo lugar, se investigó si las simulaciones propuestas eran una 

representación fiel de la realidad en el sentido que el sistema de entrenamiento en 

Realidad Virtual permite diferenciar entre varios niveles de experiencias: expertos y no 

expertos. Por eso, se comparo el rendimiento de los dos expertos en ambas tareas con la 

de los técnicos no expertos. Esta comparación se hizo basándose en las medidas 

realizadas durante la fase de pre-evaluación. Como resultado se obtuvo que los expertos 

fueron capaces de llegar a un nivel más alto de cumplimiento que los técnicos no 

expertos en ambas tareas. Por lo tanto, el sistema de entrenamiento permite distinguir 

entre ambos niveles de experiencia y, por tanto, las simulaciones propuestas constituyen 

unas representaciones fieles a la realización de ambas tareas en el mundo real.  La 

segunda hipótesis inicial queda entonces demostrada.  

Finalmente, con los datos subjetivos recopilados a lo largo del experimento, se 

demostró que todos los sujetos tuvieron una buena opinión del entrenamiento 

propuesto, insistiendo sobre el realismo de la ejecución de ambas tareas.   

 

Conclusiones 

 

Los resultados de estos estudios experimentales resaltan la eficacia del programa 

de entrenamiento implementado en el sistema de Realidad Virtual, mostrando mejoras 

relevantes en la ejecución de las habilidades motoras durante la realización de las tareas 
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de desbaste fino y de pulido. Esto señala la validez interna del entrenamiento propuesto. 

Por otra parte, la validez de constructo del sistema también se sugiere a través de la 

discriminación entre los niveles de experiencia de operadores expertos y no expertos. 

Estos resultados proporcionan indicios de la validez externa del sistema de 

entrenamiento en Realidad Virtual para desarrollar las habilidades motoras finas que 

son relevantes para el desempeño de tareas de desbaste fino y de pulido en entornos 

reales. 

En definitiva, este trabajo de investigación da soporte a la idea de que la 

Realidad Virtual mejorada con la interacción háptica puede ser útil para el 

entrenamiento de habilidades motoras, en complemento al entrenamiento que 

tradicionalmente se lleva a cabo en el mundo real.  
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Chapter 1. Introduction 

Manual work is a paramount and expensive component of the EU industrial activity. 

With the evolution of technologies since the early eighties, unskilled manual work has been 

mostly automated. Industries have been thus able to maintain competitively their activity in 

the globalized market by lowering their manufacturing costs. In contrast, high value high 

knowledge manual work cannot be automated. The practical knowledge of workers which is 

required for the performance of highly skilled manual operations represents a serious 

competitive advantage for EU industries. Such knowledge is tacit to the extent that in contrast 

to explicit knowledge, it cannot be uttered in sentences or captured in drawings but rather 

refers to skills acquired through practical experience (Nonaka & Von Krogh, 2009). Tacit 

knowledge is thus difficult to transfer to other people. 

For many years now, industries have demonstrated great interest in using computer-

aided solutions for training high value high knowledge manual work in order to increase their 

competitiveness (Mujber et al., 2004; Abate et al., 2009). One of these solutions is Virtual 

Reality (VR), which allows improving the training on manual work operations by providing 

realistic and interactive simulations of industrial procedures and offering additional 

informational contents that cannot be not provided otherwise. 
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The research presented in this thesis investigates the use of VR technologies to enable 

the successful development of complex motor skills that are required in the performance of 

highly skilled manual operations. A case study in an industrial maintenance task is presented.   

The purpose of this chapter is to introduce this thesis. Section 1.1 defines the 

framework of this thesis, starting with a brief overview of the training of motor skills in the 

context of industrial maintenance (Section 1.1.1), then, a short review of the use of VR 

technologies for training motor skills (Section 1.1.2) and an introduction to the research 

project which has supported this work (Section 1.1.3). Secondly, section 1.2 presents the 

research problems which have motivated this study. Thirdly, section 1.3 describes the overall 

objectives of this work. Finally, section 1.4 describes the structure of the thesis.  

1.1 FRAMEWORK OF THE STUDY 

1.1.1 Motor skill training in industrial maintenance 

The maintenance of operating components which are subject to critical process 

conditions as in industrial and nuclear power plants is crucial for ensuring the safety and the 

reliability of industrial activities. However, maintenance tasks carried out in such critical 

environments may be compromising for the safety of the operators that perform them. For 

this reason, the execution of those maintenance tasks must be efficient. Maintenance 

operators usually dedicate a considerable effort to train the motor skills that are required for 

the performance of those tasks. 

Behavioral psychologists have traditionally highlighted two fundamental methods for 

training motor skills: part-task and whole-task training (Teague et al., 1994, Utley & Astill, 

2008; Browne et al., 2009, Coker, 2009). Part-task training consists of breaking down motor 

skills required for the performance of a manual task into simpler components in order to be 

practised separately whereas whole-task training proposes a holistic approach of the target 

task.  

This thesis presents a case study of the metallographic replica, an in-situ non-

destructive inspection technique that aims to evaluate the integrity of materials exposed to 

critical process conditions. In the course of that inspection technique, several abrasive 

processes such as fine grinding and polishing operations for which accurate motor skills are 

needed (Hulsholf et al., 2005), are carried out (ASTM E 3 - 01, 2001). Those motor skills are 

traditionally trained following the whole-task training method under the supervision of an 
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expert metallurgist who makes demonstrations and provides verbal guidelines to the trainee. 

However, for reasons that are presented later, conventional training has issues and 

limitations, especially for inexperienced trainees. In particular, part-task training can be very 

effective for beginners, to the extent that it allows focusing independently on each of the 

motor skills that are required throughout those tasks. However, arranging such part-task 

training in the real world may be complicated. VR is believed to enable solving this and other 

issues that arise throughout the training carried out in the real world, allowing effective part-

task and whole-task training. 

1.1.2 Virtual Reality, haptic interaction and motor skill  training 

VR has been traditionally defined as a computer graphics interface that involves real-

time, immersive and interactive simulation, enabling a user to be physically and perceptually 

involved in a virtual environment (Burdea & Coiffet, 2003). It has been frequently employed 

to support the training of procedural and motor skills using haptic force feedback devices 

(Bhatti et al., 2009; Gutiérrez et al., 2010).  

In VR, motor skills can be practised through multiple rehearsals of training exercises, 

designed according to part-task and whole-task training methods carried out in realistic 

virtual environments in which, according to Bossard et al. (2008), Abate et al. (2009) and 

Wang, Y. et al. (2009), the performer’s safety is not compromised. Moreover, VR allows 

defining a series of objective performance metrics (i.e. completion time, error ratio, 

efficiency of performance …) which can be used to assess the development of motor skills 

throughout the training process (Haque & Srinivasan, 2006; Van der Meijden & Schijven, 

2009; Johanesson et al., 2010; Rhienmora et al., 2011). Task performance-related information 

that is usually not available in the real world can be thus provided throughout VR training. 

The provision of such information is referred as augmented feedback, which aims to 

supplement the sensory information perceived during the performance of the task with 

additional multimodal information. Many research studies have investigated the effect of 

augmented feedback to support the learning of complex motor skills in VR (Solis et al., 2003; 

Esen et al., 2004; Morris et al., 2007; Sewell et al., 2007; Johannesson et al., 2010). 

According to Johanesson et al. (2010) and Gopher (2012), augmented feedback is a 

prominent feature of motor skill training in VR. Thus, the use of VR is believed to be 

beneficial for training those motor skills that are relevant in an industrial maintenance task. 
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Haptic interaction enables providing tactile and kinesthetic intrinsic information. This 

is given in the form of force feedback resulting from the computation of object contact and 

manipulation in virtual environments (Hayward et al., 2004). According to Abate et al., 

(2009), the addition of haptic force feedback within virtual environments allows bringing the 

concept of VR interaction closer to realistic physical models. Haptic force feedback has been 

shown to be profitable for training fine motor skills at all levels of expertise (Tholey et al., 

2005, Wagner et al., 2007). For this reason, it has been frequently employed to support motor 

skill training in medical (Morris et al., 2006; Sternberg et al., 2007; for a comprehensive list 

of examples see the review presented by Coles et al., 2011) and dentistry procedures 

(Steinberg et al., 2007; Suebnukarn et al., 2010; Rhienmora et al., 2011). In contrast, fewer 

studies have proposed using haptic force feedback for training the fine motor skills that are 

involved in industrial tasks (Balijepalli & Kesavadas, 2003; He & Chen, 2006; Wang, Y. et 

al. 2006; Wang, Y. et al., 2009; Sung et al., 2011). Moreover, the effect of the suggested 

haptic-based training on the development of those skills has not been investigated in depth.  

This thesis presents a VR training system enhanced with haptic force feedback which 

aims to train some of the fine motor skills that are involved in the performance of an 

industrial maintenance task. The system proposes practical training exercises inspired by 

part-task and whole-task training methods and enhanced with augmented feedback.    

1.1.3 The ManuVAR Project 

ManuVAR (Manual work support throughout system lifecycle by exploiting Virtual 

and Augmented Reality) is an EU funded project from the Seventh framework programme 

(http://manuvar.eu/) which aimed to develop a technological and methodological framework 

using virtual and augmented reality technology (VR/AR) for supporting high value high 

knowledge manual work through the product life cycle in order to enhance the 

competitiveness of EU industries (Krassi et al., 2010b, Krassi et al., 2010c).  

Several industrial use cases distributed across the whole product life cycle were 

implemented. One of these industrial use cases consisted of procedural training for the 

performance of the metallographic replica technique and motor skill training on fine grinding 

and polishing operations. A cluster formed by the University of Malaga, Tecnatom S.A., a 

Spanish company that delivers advanced engineering services in industrial facilities and 

nuclear power plants, the Association for the Advancement of Radical Behavior Analysis 
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(AARBA) and the Human Factors Research Group from the University of Nottingham was in 

charge of the definition, design, development and evaluation of that use case.  

Several fundamental teaching and training methods were implemented on the 

ManuVAR platform in order to enable procedural and motor skill training using VR 

technologies (Poyade et al., 2011). However, the research presented in this thesis only focuses 

on the training of motor skills (Figure 1).  

 

Figure 1. The work presented in this thesis was part of the implementation and 

evaluation of a training framework on the ManuVAR platform. 

More information about the ManuVAR project is available in Appendix C. 

1.2 MOTIVATION 

As mentioned in section 1.1.1, the motor skills that are relevant in fine grinding and 

polishing tasks are traditionally trained following the whole-task training method under the 

supervision of an expert metallurgist. That training aims at the successful development of fine 

motor skills that are required in both tasks. However, as addressed later in this thesis, 

practices inspired by the whole-task training method are often too challenging for 

inexperienced trainees. Therefore, the learning of motor skills occurs with difficulty. In this 

work, two of the fine motor skills that are required in fine grinding and polishing tasks are 

considered. These are angle skill for the inclination of the power tool on the surface of the 

material being inspected, and force skill for the force exerted on the surface of the material 

through the tool.  
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Motor skill training inspired by the part-task training method can be more profitable 

to the extent that it enables dissociating a sub-set of motor skills into several independent 

components which can be practised separately. However, the dissociation of motor skills that 

are usually performed simultaneously is not easy to implement in the real world.  

In many occasions, VR has been employed to train motor skills following part-task 

and whole-task training methods. However, to the best knowledge of the author, an analysis 

of the effectiveness of part-task training on fine motor skills usually performed 

simultaneously is still missing. Thus, the question arises whether the VR training of those 

fine motor skills is effective for improving performance in real operating environments. 

Fine motor skills such as those required in fine grinding and polishing tasks belong to 

the domain of tacit knowledge and are therefore difficult to describe verbally. On the one 

hand, force skill is not directly observable. Thus, the expert metallurgist in charge of the 

supervision of the training is not able to monitor the force being exerted. Therefore, verbal 

guidelines provided to assist the performance of that skill difficulty lead to effective 

refinements of the exerted force. On the other hand, angle skill is observable. However, 

refinements of that skill require a high degree of accuracy that is difficult to describe 

verbally. Thus, refinements of both skills suggested through verbal guidelines are not 

sufficient to reach a high degree of accuracy during the performance of the tasks proposed in 

this thesis.  

To the extent that VR allows the provision of augmented feedback which bring 

additional performance-related information to the process of motor skill training, the question 

arises as to whether this feature of VR training is sufficient to enable motor skills to gain in 

proficiency in the real world. 

1.3  OBJECTIVES 

The purpose of the research presented in this thesis is to explore the effect of VR 

training based on haptic interaction along with the use of augmented feedback to support the 

development of fine motor skills, and more specifically of angle and force skills in the 

context of fine grinding and polishing tasks. To do so, it is first necessary to design and 

develop a VR training system which enables training those motor skills. Then, the 

effectiveness of that system must be evaluated in order to investigate the validity of the 

system to train motor skills in the suggested context. 
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The design of the VR training system should be based on a description of the 

functionalities of that system in order to enable the resulting development to resolve the 

research problems presented in section 1.2. Throughout the design stage, a functional analysis 

based on the extraction of customer requirements was carried out in order to highlight those 

functionalities. The resulting development proposes a training toolkit which allows building 

flexible training programs. Each training program enables configuring a series of exercises 

inspired by part-task and whole-task training methods and enhanced with augmented 

feedback.  

This work presents two experimental studies which aim to assess the effectiveness of 

the VR training system to support motor skill training. The first study aims to demonstrate 

that part-task training enables novice trainees to become more proficient when performing 

fine motor skills in a whole-target task in VR. The second study aims to demonstrate the 

effectiveness of VR training inspired by part-task and whole-task training methods for non-

expert trainees. The external validity of the VR training system is subsequently investigated. 

The external validity of the system refers to its ability to effectively train motor skills which 

can be transferred to the real environment.   

On the basis of the addressed objectives and the previous research, which is  reviewed 

in the following chapters of the thesis, two initial hypotheses are presented: 

1. Hypothesis 1: The implementation of fundamental training methods such as 

part-task and whole-task training in the context of VR training, along with the 

provision of augmented feedback, is valid for training fine motor skills that are 

required in the suggested tasks. 

2. Hypothesis 2: The suggested VR training enables transferring the trained 

motor skills to real operating environments.  

The evaluation proposed in this work is limited to a specific case of motor skill 

training. Fine grinding and polishing performance in real operating environments may be 

altered by ergonomic and environmental factors such as body posture, lighting, and external 

disturbances caused by surrounding operational activities. Studying the effect of these factors 

on task performance is out of the scope of this thesis. Moreover, the impact of immersive VR 
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technologies such as stereoscopic display and point of view tracking on the training of motor 

skills is not investigated. 

1.4 STRUCTURE OF THE THESIS 

On the basis of the objectives described in section 1.3, this thesis is structured as 

shown below (Figure 2). 

 

Figure 2. Structure of the thesis. 
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The remainder of the thesis starts with a presentation of the relevant theoretical 

background. Chapter 2 provides a description of fundamental concepts in motor skill training 

used later in the thesis, giving emphasis to the factors that lead to the successful development 

of motor skills. Chapter 3 presents the research background of this thesis, including the use of 

haptic force feedback and the fundamental training methods and types of augmented 

feedback that support motor skill training in VR.  

The third part of the thesis describes the design and development of the VR training 

system. Chapter 4 defines the context for the modelling and the development of the VR 

training system. It introduces the maintenance tasks supported by the VR training system and 

highlights the motivations for such development. It then proceeds to functional and 

requirement analysis in order to provide a coherent description of the functionalities of the 

system. Chapter 5 describes the resulting design and development of the VR training system. 

It presents a training toolkit which supports the functionalities of the system. Finally, it 

presents a novel task performance model along with the methodology followed to construct 

it.   

The fourth part of the thesis presents two experiments that aim at evaluating and 

validating the VR training system. Chapter 6 investigates the effectiveness of part-task 

training in order to enable inexperienced performers to gain in proficiency while performing 

a simulated polishing task. Chapter 7 assesses the effectiveness of part-task and whole-task 

training methods on non-expert performers to improve their motor skills for the performance 

of both tasks and investigates the external validity of the system.  

Finally, Chapter 8 proposes a general discussion on experimental results with regards 

to previous research and concludes the thesis. 

Additionally, six appendices are provided at the end of this thesis. Appendices A and 

B focus on the VR technologies used in the experimental studies presented in chapters 6 and 

7. Appendix C presents the architecture of the ManuVAR platform and helps to set in context 

the current work. Appendix D reports all the documentation provided to participants in the 

experiments. Finally, appendices E and F present the qualitative data collected throughout 

both experimental studies. 
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Chapter 2. Motor Skill Development 

Humans are able to perform a wide range of complex movements that are crucial to 

ensure our independence and interaction with our surroundings (Utley & Astill, 2008). 

Several definitions of the term skill have been proposed in an attempt to explain what are 

motor skills. For instance, Guthrie (1952) (reported in Schmidt & Wrisberg, 2008; Utley & 

Astill, 2008) has defined such skill as the ability to achieve an end-result with a maximum 

certainty of goal achievement, minimum energy expenditure and movement completion time; 

Newell (1991) has suggested that motor skills are those skills in which the emphasis is given 

to the movement and the outcome of the action; Schmidt & Wrisberg (2008) have defined 

motor skill as the ability to reliably and consistently perform sequences of organized 

movements considering the perceptual sensory information. However, all these definitions 

converge towards the fact that motor skills aim to achieve specific goals set as motor 

problems that arise from the interaction of an individual with its surroundings (Higgins, 

1991). These motor problems are solved through the execution of coordinated movements 

onto one or several degrees of freedom of the human body. 

This chapter introduces the concepts of motor skills, motor learning and gives 

emphasis to the factors that lead to the successful development of motor skills. Section 2.1 
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presents common taxonomies used to classify motor skills. Section 2.2 introduces several 

theories to support the acquisition of motor skills and describes how motor learning occurs 

through performance improvements. Finally, sections 2.3 and 2.4 propose several 

improvements in the design of the learning experience that aim to enhance the acquisition of 

motor skills.  

2.1 CLASSIFICATION OF MOTOR SKILLS 

Motor skills are complex to describe and evaluate. For this reason, several taxonomies 

have been proposed, aiming to organize motor skills according to specific characteristics. 

Most popular classifications tend to conceptualize motor skills regarding to a task-centered 

approach. Other taxonomies propose classifying motor skills according to an approach 

centered in the performance proficiency defined by maximum certainty of goal achievement, 

minimum energy expenditure and movement completion time. Thus, these taxonomies 

support the definition of motor skill as proposed by Guthrie (1952). However, classifications 

centered in performance proficiency are strongly dependent on the level of expertise of the 

performer and remain less frequently used.   

Task-centered taxonomies approach motor skills from the perspective of the task 

organization (Section 2.1.1), the importance of the cognitive load in the achievement of the 

goals (Section 2.1.2), the involvement of muscular activity (Section 2.1.3) and the 

predictability of the environment (Sections 2.1.4 & 2.1.5).  

2.1.1 Task organization 

Classification following task organization proposes a one-dimensional system in 

which motor skills are arranged from discrete to continuous skills, with serial skills set in-

between. According to Schmidt & Wrisberg (2008), discrete skills are generally those skills 

involved in actions of short duration with a well-defined beginning and end (i.e. punching, 

hammering, screwing, etc…). Serial skills describe a group of ordered discrete skills that 

compose more complex and long lasting movements (i.e. sequence of the triple jump, 

throwing a javelin, mechanical assembling, polishing, grinding, etc…). In many occasions, 

serial skills are decomposed into several discrete skills in order to be more efficiently learned 

through practice. In this thesis, emphasis will be given to the decomposition of motor skills 

that are relevant for the performance of fine grinding and polishing tasks, into several discrete 
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skills to support motor skill training. Section 2.3 introduces the concept of breaking down 

motor skills into several discrete skills. Continuous skills are those repetitive skills that 

compose rhythmic actions (i.e. running, swimming, cycling, assembly line work, etc…). 

Continuous skills have no concrete beginning or end and can be stopped at any moment of 

the realization of the action.  

2.1.2 Importance of cognitive load  

Motor skills can also be classified according to the relevance of cognitive abilities in 

the success of goals achievement. This classification defines a one-dimensional system in 

which motor skills are arranged from simple to complex skills as a function of the importance 

of decision-making during the performance of those skills. Simple skills require little 

concentration and are not cognitively demanding (i.e. walking, hammering, screwing, etc…). 

In contrast, complex skills are cognitively complicated. They often require the development 

of a strategy in order to be efficiently performed. Thus, they are attention demanding and 

need to be practiced repeatedly in order to achieve a smooth performance. For instance, 

motor skills involved in complex machinery assembly tasks as those proposed by Abate et al., 

(2009) and Gutiérrez et al. (2010) are usually considered as complex skills.  

Of course, after a sufficient period of training, the performance of the practised motor 

skills gets automatized (Section 2.2.2.1) and the cognitive load is reduced to a minimum. 

However, this thesis will focused on the training period during which those motor skills that 

are required in industrial maintenance tasks are acquired (Section 4.2). Those motor skills 

would rather tend to be complex skills to the extent that during that period their performance 

in industrial facilities requires a high level of concentration over a prolonged period of time.    

2.1.3 Involvement of muscular activity 

The classification with regard to the involvement of the muscular activity in the 

course of the performance defines a one-dimensional system in which motor skills are 

arranged from fine to gross motor skills. On the one hand, fine motor skills involve groups of 

small muscles devoted to the performance of precision movements for which a high degree of 

sensory coordination is required (Magill, 2007). Fine motor skills are generally performed in 

manipulation tasks that require arm-hand-eye coordination such as in electronic component 

mounting and soldering tasks (Sung et al., 2011). Similarly, the motor skills that are focused 
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in this thesis for the performance of fine grinding and polishing tasks consist of fine motor 

skills. On the other hand, gross motor skills involve groups of large muscles requested for the 

performance of not precise movements often achieved in wide workspaces (i.e. hammering, 

lifting weight, etc…). However, in many occasions, fine and gross motor skills are performed 

simultaneously.  

2.1.4 Predictability of the environment 

Knapp (1967) (reported in Schmidt & Wrisberg, 2008) has proposed a one-

dimensional classification of motor skills based on the level of variability and predictability 

of the environment in which they are usually performed. Motor skills are ranged from open to 

closed skills. Open skills are those skills in which performance is affected by external factors 

because they are carried out in variable and unpredictable environments. Thus, the performer 

must be able to quickly evaluate the environment characteristics based on the information 

obtained from perceptual sensory cues, and must rapidly adapt movement patterns. Motor 

skills involved in the performance of fine grinding and polishing tasks conducted during a 

maintenance campaign of an industrial plant, can be considered as open skills to the extent 

that the stillness of the environment is usually altered by surrounding maintenance activities. 

In contrast, closed skills are performed in stable and predictable environments. Closed skills 

are not affected by environment characteristics, so performers can organize their movements 

with no rush. For instance, motor skills involved in the performance of fine grinding and 

polishing tasks carried out at the laboratory for training purposes are thus considered as 

closed skills. 

2.1.5 Gentile’s Two-dimensional classification 

Gentile (1987) (seen in Magill, 2007; Utley & Astill, 2008) have highlighted that 

most common taxonomies restrict the classification of motor skills onto a unique dimension, 

without considering the movements complexity in their context. In response to such criticism, 

Gentile (1987) has proposed a two-dimensional classification which considers action 

requirements and environmental demands (Table 1). However, in the context of this thesis, 

this taxonomy is conceived as strongly inspired by the classification based on the 

predictability of the environment in which motor skills are arranged as open and closed skills 

(Section 2.1.4).  
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Gentile´s taxonomy is traditionally referred as a two-dimensional classification 

model. Nonetheless, that model can be argued to be composed of more dimensions to the 

extent that motor skills are arranged according to two states of variability of the action (states 

1 & 2) and two other states of variability of the environment (states 3 & 4). In state 1, the 

body can be stationary or in movement, whereas in state 2, an object manipulation can be 

engaged or not. Moreover, the degree of variability of the environment in which the action is 

performed, referred as the regulatory condition, can be (state 3) intra-trial and (state 4) inter-

trial.   

Table 1. Gentile's two-dimensional classification system (Utley & Astill, 2008). 
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Motor skills required in fine grinding and polishing tasks are usually part of actions in 

which the body orientation remains relatively stable and object manipulation is engaged. 

Moreover, the laboratory in which those skills are traditionally trained consists of an 

environment with stationary regulatory conditions and no variability between trials. In 

contrast, industrial plants in which those skills are commonly performed for inspection 

purposes, the environment can be considered as highly changing with a high degree of 

variability between rehearsals.  
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2.2 MOTOR SKILL ACQUISITION  

Motor skills are developed through the process of motor learning during which an 

unskilled performer passes through different phases to become a highly skilled performer.  

Schmidt & Wrisberg (2008) have described the learning of a motor skill as an internal 

process associated to practice that leads to relatively permanent changes in the capability to 

perform an action. Those changes appear in the form of a slow and progressive retention 

during which the skill is gradually consolidated passing from an initial and fragile state in 

which it tends to be easily forgotten, to a more permanent and automatized state (Brashers-

Krug et al., 1996). Section 2.2.1 presents the mechanisms that support the process of 

acquisition and development of motor skills and section 2.2.2 gives emphasis to the 

consolidation of those motor skills through several stages.  

2.2.1 Theories of motor skill acquisition 

For a long time, researchers have attempted to explain how the process of motor 

learning was achieved. Traditionally, cognitive theories of skill acquisition placed the 

emphasis on the mechanisms used by the central nervous system to plan and control 

movements. These mechanisms are centralized and organized in motor programs as a set of 

prescriptive sub-processes in charge of stimulus identification using perceptual sensory cues, 

selection and organization of the response, in order to enable modifying and performing an 

action. Basically, motor programs enable storing a representation of the dynamics of 

movements previously performed in the movement memory and compare it with the 

characteristics of the movement being currently produced. Adams, J. A. (1971) (reported in 

Schmidt, 1975, Lee & Schmidt, 2008; Utley & Astill, 2008; Rosenbaum, 2009) and Schmidt 

(1975) have proposed two approaches of motor learning based on prescriptive motor control 

theories.  

 According to Newell (2003) and Schmidt (2003) common thoughts concerning motor 

control theories have changed over the time. A more contemporary theory than those 

presented above has suggested an ecological approach to the acquisition of motor skills in 

which motor skill acquisition is more than just a set of processes reproduced in a sequential 

fashion as a function of stimuli (Newell, 1991). This theory implies that the development of 

motor skill emerges naturally through an exploratory phase in which a performer searches for 
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optimal movement characteristics in accordance with his/her own capabilities to perform the 

movement, and restrictions imposed by the task and the environmental context. 

2.2.1.1 Adam’s closed-loop theory 

Adam, J. A. (1971) (reported in Schmidt, 1975; Lee & Schmidt, 2008; Utley & Astill, 

2008; Rosenbaum, 2009) has proposed a closed-loop theory to support motor skill acquisition 

during slow, graded and linear positioning tasks. A paramount principle of Adam’s closed-

loop theory is the frequent need of feedback providing information about goal achievement, 

in order to enable a performer to adjust the movement coordination pattern. Section 2.4.2 

refers to that kind of extrinsic information as Knowledge of Results (KR). 

Adam, J. A. (1971) suggested that learning a motor skill occurs based on two memory 

states, referred to as memory trace and perceptual trace. The memory trace consists of a 

simple motor program responsible for selecting and initiating the appropriate motor response 

based on the representation of prior actions stored in movement memory. The perceptual 

trace supports accurate performance of a movement by guiding body limbs towards correct 

position and along appropriate trajectory. The perceptual trace consists of a unique 

representation of the action based on past experience, which encompasses perceptual sensory 

information, and provides the most accurate reflection of the movement performance. It acts 

as a reference of correctness and enables error adjustments for next attempts of the 

movement. During and after movement performance, a performer’s central nervous system 

compares the actual intrinsic feedback (Section 2.4.2) with the information provided by the 

perceptual trace and consequently enables adjustments of the movement to achieve an 

optimal performance. The perceptual trace is in general strengthened by an increased 

exposure to extrinsic feedback, more especially to KR, and errors decrease with practice until 

the representation of the action in the trace is accurate.  

However, Schmidt (1975) highlighted some criticisms to Adam’s theory. First, it was 

developed from slow positioning movements and presented inherent problems for rapid 

movement learning. Second, Adam predicted incorrectly that the amount of KR would 

enhance movement performance and the effect of withdrawing such information feedback 

might disrupt motor learning and corrupt the accuracy of the trace (Winstein & Schmidt, 

1990). Third, Adam’s theory states that the perceptual trace acts as a reference of correctness 

based on feedback from previous experience, without which the trace cannot be developed. 

Thus, Adam’s theory hardly accounts for the development of accurate novel movements 
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(reported in Utley & Astill, 2008). And finally, Schmidt (1975) argued a storage problem in 

the movement memory as Adam’s theory supports the storage of every sequence of 

movements as a unique representation of an action. It is referred as a one-to-one mapping and 

suggests the storage of a considerable amount of information.   

2.2.1.2 Schmidt’s theory of schema 

Schmidt (1975) attempted to generalize motor learning to a wide range of movements 

involving discrete, rapid, open and closed skills through the theory of schemas. Schmidt’s 

theory incorporates much of Adam’s closed loop theory but organized in a different way. It 

provides a solution to the memory storage issue due to the one-to-one mapping. The approach 

of Schmidt proposes a one-to-many mapping between the movement being produced and a 

conceptualized representation of the action that includes a description of a movement 

coordination pattern using both variant and invariant features.  

A schema defines a set of rules that describe a class of movement as a structure of 

information parameterized by several specification variables that yield to a specific response 

outcome (Schmidt, 1975). Basically, Schmidt suggests that actions are programmed in 

advance and stored in a generic way in movement memory as Generalized Motor Programs 

(GMP). 

Schmidt's schema is based on the assumption that when an individual attempts to 

perform a movement to achieve a specific objective, the information indicating the initial 

conditions of the performance, the response specifications for the motor program, the sensory 

consequences of the response and the response outcome are recorded once the action is 

complete. The recorded information can be thus reused aiming to be attuned when attempting 

to perform a similar movement coordination pattern with different characteristics. For 

instance, the performance of a fine grinding or a polishing task as a movement pattern is 

ruled by a set of variables that are proper to the task being performed (i.e. range of applied 

force and tool inclination). However, when performing on distinct areas of an industrial plant, 

the characteristics of that movement pattern may be different. Thus, the GMP stores a generic 

representation of the movement pattern that can be reused and attuned for further 

performances. 

The initial conditions encompass all the preliminary available intrinsic and extrinsic 

information prior to the response (i.e. initial posture of body limbs, environmental conditions, 

etc…). This information remains crucial for movement planning in the environmental 
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context. The response specifications consist of the characteristics of the produced movement. 

These characteristics can be variant (i.e. force, angle, speed, duration, etc…) and invariant 

(i.e. right hand, left hand, both hands, etc…). The sensory consequences gather the intrinsic 

and extrinsic information feedback perceived during the response (i.e. proprioceptive, visual, 

auditory, etc…). And finally, the response outcome consists of the KR and other sources of 

feedback that report the success of the performance regarding to the original movement 

objectives. 

Schmidt’s theory suggests that after several trials of a novel movement coordination 

pattern, the central nervous system formulates two schemas that abstract the information 

resulting from past experiences. These schemas are named recall and recognition schemas. 

The recall schema considers the relationship between the initial conditions of the 

action, the past experiences outcomes and response specifications, to address new action 

goals and determine most appropriate response specifications to achieve the movement 

coordination pattern to the desired outcome. Response specifications to be determined can be 

novel or already existing. Therefore, the recall schema produces a motor response. 

At the same time, the recognition schema compares the actual sensory consequences 

and response outcome with the expected sensory consequences and outcomes based on 

conceptualized information from past experiences. The recognition schema accounts 

accurately for error detection in case the actual sensory consequences and response differ 

from the expected sensory consequences and response. And therefore, it indicates that the 

actual motor response must be adjusted in order to achieve the action goal.   

2.2.1.3 Newell’s constraint theory 

Newell (1986) (reported in Utley & Astill, 2008) proposed a dynamic system theory 

based on an ecological approach of the process of motor learning in which movement 

coordination patterns naturally emerge self-organized as a function of an interaction with a 

set of possibly changing constraints. Newell (1986) suggested that motor skill acquisition 

consists of an exploratory phase that stands through practice. During this phase, an individual 

searches for optimal motor coordination solutions to meet the demand of the task, by 

interacting with three major constraints: organismic, task and environmental constraints. 

Organismic constraints refer to the individual capability to perform coordinated 

movements (i.e. body shape, weight, height, emotional, cognitive and agility constraints, 

etc…). Task constraints refer to all task aspects that limit the interaction (i.e. task’s rules, 
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equipment in use, and objective of the action, etc…). And finally, environmental constraints 

consist of the information obtained through all perceptual sensory cues (visual and auditory 

cues, proprioceptive information, information feedback, etc...) that characterize the 

environment context. In that sense, the implementation of haptic force feedback in VR 

training simulations is paramount to provide realistic environmental constraints and therefore 

enhance the exploration of appropriate motor coordination patterns. 

At the beginning of the exploration, when learning a novel motor skill, movement 

coordination patterns present a high degree of variability. However, through practice and 

using the available information feedback that reflects the interaction with all constraints, the 

performer is naturally able to gradually adapt the movement coordination pattern to the 

desired response outcome. Therefore, the coordination becomes progressively more stable 

and the practiced skill gets progressively consolidated and automatized. The behaviour 

resulting from the stabilized movement coordination pattern is referred as attractor. For 

instance, Kelso & Schöner (1988) have demonstrated that when performing out of phase 

fingertip movements and increasing progressively the pace, movement coordination pattern 

was naturally stabilized to in-phase or anti-phase movement. In-phase and anti-phase 

synchronisms were the natural attractor states for the coordination of finger movement. 

However, newer attractor states can be developed through practice.   

2.2.2 Stages of motor learning  

The learning of a motor skill viewed from the perspective of a process in which a 

performer improves a skill through practice, is traditionally described as a model composed 

of several hierarchically organized stages.  

2.2.2.1 Fitts and Posner three-stage model 

Fitts & Posner (1968) proposed a model nowadays considered as the most popular 

framework for understanding motor skill acquisition (Kolozsvari et al., 2011). According to 

them, the learning of motor skills as those required in fine grinding and polishing tasks, 

occurs through three stages: cognitive, associative or intermediate and autonomous. It is 

assumed that through practice, motor skills progressively gain in proficiency along one phase 

and gradually merge into another (Figure 3).  
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Figure 3. The three-stage model proposed by Fitts and Posner represented as a 

one-dimensional system (figure as proposed by Utley & Astill, 2008). Motor 

learning occurs gradually through practice as the considerable mental demand 

required at the cognitive stage progressively decreases until the skill becomes 

fully automatized. 

The cognitive stage is characterized by learners trying to understand the task and 

testing several strategies to efficiently perform the task. Often, the learner engages self 

conversations to promote verbal guidelines in order to support the performance. The learner 

devotes considerable cognitive activity to the performance and initially tends to commit a 

large number of errors without being able to identify and solve them. Motor skill 

performance is generally unsure, awkward and with little consistency. However, performance 

improvements tend to be important and generally occur rapidly. Throughout this stage, 

instructions, demonstrations, assistance (Section 2.4.1), and information feedback (Section 

2.4.2) are considered to be particularly beneficial for performance improvements.  

In the associative or intermediary stage, the learner organizes motor skill patterns 

more effectively which results in significant improvements in the performance. The learner is 

able to associate environmental cues with motor skill characteristics enabling him or her to 

anticipate and time skills resulting in smoother and more stable movements.  For instance, 

during a fine grinding and polishing tasks, the learner is able to associate tool inclinations and 

exerted forces with the outcome of task performance. Moreover, self-verbal guidance tends to 

be less frequent and performance progressively becomes cognitively effortless. The learner 

drastically commits fewer errors and is able to refine their motor skills to solve these errors. 

Generally, the learner does not require as much assistance to efficiently perform the task. 

This stage usually lasts considerably longer than the cognitive stage.  

The autonomous stage is characterized by the absence of cognitive load during the 

performance of the task. Motor skill patterns are performed more consistently and almost 

automatically. The learner is able to efficiently detect errors and refine movements with 
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proper adjustments. The learner generally shows a high degree of self confidence while 

performing the task. 

In this thesis, an experimental study will be conducted in order to evaluate the 

effectiveness of a VR training system to carry novice performers with no knowledge of the 

motor skills that are relevant in a polishing task, from the cognitive to a more advanced stage 

of motor learning (Chapter 6).  

2.2.2.2 Gentile’s two-stage model 

Gentile (1987) (reported in Magill, 2007; Utley & Astill, 2008) modeled motor 

learning from the perspective of the goal achievement. The model is composed of two stages: 

the verbal-cognitive and the motor stages (Schmidt & Wrisberg, 2008). 

In the verbal-cognitive stage of learning, the performer aims to acquire a pattern of 

movement coordination that allows completing the action with a certain degree of success. 

Gentile stated that the learner determines the most appropriate movement coordination 

pattern by exploring a wide variety of movement possibilities through practice and error 

making. The performer must develop movement characteristics as a function of the 

variability of the environment, referred in section 2.1.5, as regulatory conditions of the 

environment. This suggests the existence of an explicit mapping process that matches 

movement characteristics with regulatory conditions of the environment. To do so, the 

performer must be able to discriminate environmental features in order to differentiate 

between regulatory conditions that determine how the movement must be produced and non-

regulatory conditions that do not influence the performance of the movement. In the verbal-

cognitive stage of the motor learning, the learner dedicates an important cognitive activity 

which often encompasses a self-conversation in order to establish the most appropriate 

movement coordination pattern to achieve the task goal. When reaching the end of this stage, 

the learner has developed the appropriate movement coordination pattern that allows 

achieving the goal even though performance is not consistent and efficient. 

In the motor stage of learning, the learner must acquire three basic characteristics in 

order to keep on improving the skill. First, the learner must generalize the movement 

coordination pattern acquired during the verbal-cognitive stage to any environmental contexts 

that he or she can be eventually confronted. For instance, a technical worker must be able to 

perform fine grinding and polishing tasks on any material surface he/she might be confronted. 

Secondly, the learner’s performance must become more consistent in order to achieve the 
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action goal on demand. Thus, the technical worker must be able to perform several rehearsals 

of a maintenance task with the same degree of efficiency. Thirdly, the learner must be able to 

economize physical and cognitive efforts while performing the skill. In that case, the motor 

skill becomes almost automatic and the performer has acquired a high level of expertise. In 

that sense, fine grinding and polishing operations are instinctual (automatic) for expert 

metallurgists but physically and cognitively demanding for unskilled performers.  

In this last stage, Gentile’s model aims to adjust and generalize a movement 

coordination pattern in order to meet the task demand in all possible environmental contexts. 

However, the learner’s goal for refinement and generalization of a movement may differ 

depending on the nature of the skill being performed. Gentile has proposed a classification of 

movements based on the complexity of the action and the predictability of the environment 

(Section 2.1.5). However, in order to simplify this approach, motor skills can be arranged as 

open and closed skills (Section 2.1.4).  

On the one hand, the practice of open skills usually implicates the performance of 

rapid movements in ever-changing environments. The performer is often required to quickly 

adapt the movement during the trial in order to almost immediately meet the task demand. On 

the basis of the provided information feedback during and after the performance (Section 

2.4.2), the performer attempts to diversify the movement characteristics dependently to the 

dynamics of the environment. In industrial plants where fine grinding and polishing tasks are 

carried out, a performer must rapidly adapt task performance to possible disturbances caused 

by surrounding maintenance activities. For instance, a decrease of environmental lighting 

may lead to change working posture and movement patterns in order to enable the 

achievement of the task. This is referred as the diversification stage (Schmidt & Wrisberg, 

2008).  

On the other hand, the practice of a closed skill usually involves performance of 

movements in a stationary environment. The performer is given the opportunity to use the 

information feedback (Section 2.4.2) to fixate the movement coordination pattern from trial 

to trial. During the performance of fine grinding and polishing tasks in a laboratory, the 

performer has the opportunity to refine angle and force skills with no rush with regards to the 

available information feedback. This is referred as the fixation stage (Schmidt & Wrisberg, 

2008).  

In this thesis, emphasis will be given only to motor skill training for fine grinding and 

polishing tasks in stationary environments. Moreover, as mentioned previously in section 1.3, 
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ergonomic considerations (i.e. arm and full body posture) are out of the scope of this research 

work.  

2.2.2.3 The Bernstein’s stage theory  

Bernstein (1967) (reported in Newell & Vaillancourt, 2001; Magill, 2007; Utley & 

Astill, 2008) proposed a dynamic approach of motor learning. In fact, Bernstein’s model is 

based on an ecological approach of motor skill acquisition which argues that motor programs 

provide an excessive emphasis on the organization of actions in the central nervous system 

and omit the dynamics of body limbs to meet the task demand in accordance with 

environment constraints.  

Bernstein suggests that the complexity of learning a novel motor skill remains in the 

development of a movement coordination pattern that enables a performer to progressively 

master multiple degrees of freedom of the human movement system.  

The development of a pattern of coordination over several degrees of freedom in 

order to efficiently perform a motor skill occurs through three stages of learning: novice, 

advanced and expert.   

In the novice stage, the learner temporarily reduces the number of active degrees of 

freedom by freezing out body limbs at the periphery of the movement. The learner explores 

the perceptual motor workspace by interacting with task and environmental constraints 

aiming to acquire the most appropriate pattern of coordination for active degrees of freedom 

resulting in the desired kinematic response.  

In the advanced stage, the learner keeps on exploring the workspace and gradually 

releases all restrictions enabling the progressive integration of previously frozen degrees of 

freedom to the movement coordination pattern. Usually, searching for optimal movement 

coordination pattern remains highly challenging as the combination of proprioceptive cues 

increases with the number of released degrees of freedom.  

And finally, in the expert stage, the fluidity during the performance of a skill results 

from a coordinated structure of body limbs. The performer exploits outcomes from the 

interaction of all possible degrees of freedom to optimize the completion of the skill.  

Vereijken et al. (1992) (reported in Newell & Vaillancourt, 2001; Utley & Astill, 

2008) have argued the Bernstein’s stage theory in a study in which participants were given 

several days to master a gross motor skill which consisted of body balancing on a ski 

simulator. The authors have demonstrated that the evolution of the dynamics of participants’ 
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limbs over days of practice was consistent with the freezing-freeing-exploiting stages 

proposed by Bernstein. In contrast, Newell & van Emmerik (1989) have highlighted no 

evidence of freeing peripheral degrees of freedom in learning a fine motor skill as signature 

handwriting. Thus, the Bernstein’s stage theory can be questioned for learning fine motor 

skills. For this reason, that theory won´t be considered to explain the learning of those fine 

motor skills that are required in fine grinding and polishing tasks as suggested in this thesis.  

2.3 DESIGNING THE LEARNING EXPERIENCE 

As mentioned in section 2.2, motor learning consists in an internal process associated 

to practice that leads to relatively permanent improvements in the capability to perform an 

action (Schmidt & Wrisberg, 2008). However, practising the target action does not always 

lead to a successful development of motor skills (Schmidt & Wrisberg, 2008). In many 

occasions, motor skills are better acquired through attuned practice proposed as a set of 

specifically designed exercises. Many authors (Teague et al., 1994, Utley & Astill, 2008; 

Browne et al., 2009, Coker, 2009) have given emphasis to two training methods (Section 

2.3.1):  

1. Whole-task training which refers to practising a task in its integrity. 

2. Part-task training which consists of breaking down motor skills involved in the 

performance of a complex task into simpler part-task components in order to 

be practiced separately, and then recombining them to reconstruct the whole 

target skill.  

Sections 2.3.2 & 2.3.3 present respectively several methods to break down a skill into 

part-task components and integrate those components to reconstruct the whole target skill. 

2.3.1 Part vs. whole-task training 

One of the main difficulties for practitioners is to decide whether it is better to 

practise a movement pattern using one or the other training method (Utley & Astill, 2008). In 

the early 60’s, Adams, J. A. (1960) explored the effectiveness of part-task and whole-task 

training methods for sequential skills involved in cockpit procedures. However, the 

motivation for decomposing training of a whole-task into several subroutines remained 

unclear. Later, Naylor & Briggs (1963) (reported in Utley & Astill, 2008; Coker, 2009) 
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hypothesized that decision making for appropriate training format should take into 

consideration two inherent features of the task: the complexity which stands for the number 

of sub-components that composed the task, and consequently how demanding would be that 

task; and the organization of the task which refers to the degree of dependence between sub-

components. 

Conditions of practice that enable trainees to optimize their performance are 

considered to be paramount for the acquisition of motor skills. On the one hand, whole-task 

training is considered to be particularly appropriate for those motor skills that are not too 

complex and remain highly organized. Effectively, the breaking down of those motor skills 

into many part-task components for training purposes would be ineffective as the dynamics 

of the whole target skill would be altered. On the other hand, part-task training is believed to 

be particularly profitable for training complex motor skills that are composed of many 

independent sub-components. The effectiveness of part-task training to support the motor 

learning of complex motor skills such as those involved in medical and rehabilitation 

procedures have been widely discussed (Johnson et al., 2008; De Visser et al., 2011; 

Kolozsvari et al., 2011; Klein et al., 2012). However, simple skills for which whole-task 

training is usually employed might often appear relatively complicated for novices. 

Effectively, at the early stage of motor learning, even for simple skills, the task demand is 

important (Section 2.2.2.1), and whole-task training may often lead to unsuccessful 

development of motor skills as it does not allow isolating relevant task components and 

prevents error recognition (Utley & Astill, 2008; Coker, 2009). In that case, part-task training 

may have a strong motivational role as it enables reducing task demand. In contrast, an 

advanced performer might be bored by part-task training as it may not be challenging 

enough. Therefore, the level of expertise of performers should also be taken into 

consideration when designing a training experience to enhance motor learning (Utley & 

Astill, 2008; Coker, 2009). 

In this thesis, the development of two independent discrete skills such as angle and 

force skills is being investigated. Those skills are relevant for the performance of fine 

grinding and polishing tasks for which whole-task training is traditionally carried out (Section 

4.2). However, such training often appears too challenging for inexperienced workers 

(Section 4.2.2). It is believed that part-task training would contribute to enhance the training 

traditionally carried out (Section 4.2). Nonetheless, the implementation of such part-task 
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training procedure in the real world may be troublesome. It is proposed that VR training 

would enable solving this issue. 

This research work presents and evaluates a VR training system which aims to 

support motor learning through part-task and whole-task training.  

2.3.2 Breakdown of skills 

Wightman & Lintern (1985) (reported in Roessingh et al., 2002; Utley & Astill, 2008) 

defined three techniques to break down skills into part-task components: segmentation 

(Figure 4.a), fractionation (Figure 4.b) and simplification (Figure 4.c). 

 

Figure 4. Three techniques for part-task training (segmentation and fractionation 

techniques appeared as proposed by Roessingh et al. (2002)) 

The segmentation technique (Figure 4.a) consists of separating serial skills into parts 

according to spatial or temporal considerations. For example, when learning to interpret a 

sequence of Morse code (Clawson et al., 2001), novices first trained on identifying the dot 

and hash pattern proper for each letter.  

The fractionation technique (Figure 4.b) consists in separating skills that are usually 

executed simultaneously. For instance, motor skills involved in car driving are performed 

simultaneously. An advanced driver can easily perform several actions at a time. However, a 

novice driver may hardly be able to focus on handling the wheel, pressing the clutch pedal 

and simultaneously changing the gear. Therefore, the novice driver only focuses on handling 

the wheel whereas the instructor changes the gear using the shared control clutch. 

Nevertheless, the effectiveness of the fractionation technique is questionable for training 

rhythmic skills involving antagonist body limbs (Coker, 2009). For instance, Klapp et al. 

(1998) demonstrated that fractionation of practice to train a rhythmic bimanual coordination 

pattern resulted in a poor accuracy compared to whole-task training technique. They have 
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investigated the effectiveness of fractioned part practice to train each hand on tapping a 

singular rhythm. Results revealed that trainees who received whole-task training were more 

accurate at performing the bimanual tapping compared to those who received part-task 

training. 

  The simplification technique (Figure 4.c) consists of acting on some characteristics 

of the task to decrease the level of difficulty and ease the performance. Coker (2009) 

proposed three ways to implement this part-task training technique: the modification of the 

equipment (i.e. using a lighter bat to ease the baseball swing), the reduction of the 

coordination requirements (i.e. training wheels on a bicycle assist the learner to maintain the 

balance) and the modification of the environment characteristics to make an open skill 

become more closed (i.e. training baseball batting of a ball placed on a tee-support). The 

reduction of coordination requirements often leads to provide physical assistance during the 

performance. Section 2.4.1 introduces several assistance concepts commonly used to enhance 

the practice and therefore the learning experience.  

The achievement of complex maintenance procedures such as fine grinding and 

polishing tasks requires an accurate performance of force, angle and motion skills (Section 

4.2). Those skills are performed simultaneously. In this thesis, part-task training inspired by 

the concepts of fractionation of angle and force skills and simplification of the motion pattern 

is believed to be profitable for the achievement of an efficient performance of fine grinding 

and polishing tasks. However, the dissociation of those concurrent motor skills in the real 

world may be complicated. 

2.3.3 Integration scheme 

 Roessingh et al. (2002) and Coker (2009) highlighted three main schemes or methods 

of part-task integration that enable reconstructing the whole target task throughout the 

training process: the part-whole method (Figure 5.a), the progressive-part method (Figure 

5.b) and the repetitive-part method (Figure 5.c).  
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Figure 5. Schemes of integration of part-task components (all schemes are as 

proposed by Roessingh et al. (2002)) 

In the part-whole method (Figure 5.a), all part-tasks are practised separately. When a 

performer is proficient in all part-tasks, the whole target task is reconstructed from all part-

task components so the whole target task can finally be practised. The part-whole method is 

appropriate for training those skills which are usually performed sequentially. For example, 

when training on heavy machinery manipulation as in an excavation task simulated in a 

virtual environment, operators usually practise separately essential sub-components of the 

task such as carrier positioning, trenching, and truck skills, and once all skills are 

consolidated, part-task components are combined in order to train the whole target task (So et 

al., 2012).    

The progressive-part method (Figure 5.b) enables simplifying the task and provides a 

better understanding of the integration of part-task components. In the progressive-part 

method, the performer starts practising independently two part-tasks. When the skills are 

mastered, both part-tasks are combined and practised together. Once the performer becomes 

proficient, an additional part component is practised separately and subsequently integrated 

into the previous association so the performer can practise the new combination. This process 

lasts until the whole target task is completely reconstructed. The progressive-part method is 

appropriate for the practice of independent skills that are usually performed simultaneously. 

For example, in many occasions in ski learning, hip movement and knee flexion are often 

practised separately when the performer is stopped on the side of the ski track and then 

combined with other skills in order to be practised on the ski run.  

The repetitive-part method (Figure 5.c) also provides a better understanding of the 

integration of part-task component. However, in contrast with the progressive-part method, 

the performer is not given the opportunity to practise each part-task independently. The 

performer only practises the first part-task component independently. When the skill is 

mastered, the performer integrates an additional part-task in order to practise them together. 
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This process continues until the whole task is fully reconstructed. The repetitive-part method 

is especially suitable when the practice of one part-task component is inseparable from the 

previous one. For instance, a novice piano player first practices with one hand, then 

incorporates the second hand in order to develop a bimanual coordination pattern and finally 

implements foot coordination to press the pedals.  

Part-task training aims to support the acquisition of several independent skills. 

Nevertheless, combining those motor skills in order to be practiced as a whole is strongly 

recommended for an effective performance of the whole target task. In this thesis, the 

integration of angle, force and motion skills inspired by the progressive-part method is 

believed to be profitable to transfer those motor skills to the performance of a whole target 

task.     

2.4 ASSISTING THE LEARNING EXPERIENCE 

2.4.1 Physical guidance 

Physical assistance during the performance of movement coordination patterns may 

be particularly beneficial for the learner. Schmidt & Wrisberg (2008) have referred to such 

assistance as physical guidance, a temporarily aid to the performance of movement 

coordination patterns that aims to enhance motor learning. Physical guidance is generally 

assumed to provide a clear view of the goals, increasing safety and minimizing fear of failing 

during the movement performance (Wulf et al., 1998b). Schmidt & Wrisberg (2008) have 

proposed two types of physical guidance: active and passive guidance. 

Active guidance enables the proactive performance of movement coordination 

patterns but physically constraints erroneous movements. The active guidance paradigm is 

considered to support the proactive learning of movement coordination patterns. Wulf et al. 

(1998b) have demonstrated the effectiveness of training with active guidance on the 

performance of complex ski movements compared to training with no physical aid. They 

have presented a study which investigated the effect of active guidance on the learning of a 

slalom-like movement coordination pattern practised on a ski simulator. The active guidance 

consisted of two ski poles fixed to the floor, which aimed to aid novice performers to achieve 

body balance movements. Performances after training with and without active guidance were 

assessed. Results reported that training with active guidance led to significant improvements 

of body balance movement compared to the other training condition. Those results suggested 
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that active guidance enhances motor learning by facilitating the exploration of the movement 

workspace proposed by Newell (1991). On the other hand, the passive guidance literally 

guides the movement through correct performance. With the passive guidance, the learner 

assumes a passive control of the movement preventing him/her to make errors. Hornby et al. 

(2008) showed interest in employing passive physical guidance during gait training for 

rehabilitation purposes. In their study, the passive guidance provided assistance to stroke 

patients by continuously tutoring lower limbs towards correct gait performance.   

However, several researches have demonstrated that both active and passive physical 

guidance when provided too frequently tended to alter the process of motor learning by 

making the learner becoming dependent on it. Winstein et al. (1994) have shown that active 

guidance when provided too frequently while training a lever placement task prevented a 

learner from constructing an accurate representation of movement coordination patterns in 

order to be stored in GMP (Section 2.2.1.2). The authors have presented experimental results 

which suggested that training with frequent active guidance did not lead to significantly 

accurate performance recall once physical assistance was withdrawn. In contrast, when the 

active guidance was faded, which means frequently provided at the early stage of learning 

and gradually withdrawn in the course of the training, recall performance was significantly 

more accurate. In a more recent study, Hornby et al. (2008) have drawn similar conclusions 

concerning passive guidance. In their study, the authors looked at the effectiveness of gait 

training with passive guidance when provided continuously and as-needed. Their results 

suggested that passive assistance when provided as-needed was more effective. Subsequently, 

the authors pointed out some drawbacks of passive guidance previously highlighted by 

Schmidt & Wrisberg (2008): (1) it tended to change the nature of the movement as several 

degrees of freedom remained constrained during the training and not during the performance 

recall; (2) it minimized the involvement of the performer; and (3) did not promote error 

recognition and correction. Hence, Hornby et al. (2008) have suggested gradually 

withdrawing passive guidance in the course of training in order to enable proactive learning 

and error correction mechanisms. Conclusions from this study are in agreement with those 

formulated by Crespo & Reinkensmeyer (2008). In their study, they have investigated the 

effectiveness of such physical guidance in a steering task. Results showed that learning 

occurs better when the assistance allows increasingly challenging learners in order to enable 

them to perform the task on their own.   
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Physical guidance has been extensively employed to support motor learning in VR 

(Feygin et al., 2002; Srimathveeravalli & Thenkurussi, 2005; Yang et al., 2008). Criticism 

mentioned about the dependence trend in such physical assistance can also be applied to the 

context of motor learning in VR (Liu et al., 2005).  

In the context of this thesis, physical active guidance when provided in virtual 

environments in the form of composite forces supplied through a haptic device which drives 

back the performance towards the correctness is rather considered as a type of concurrent 

augmented feedback as it is only provided once performance becomes erroneous (Section 

3.1.2). Section 2.4.2 provides a description of augmented feedback. Moreover, physical 

active guidance can be considered as a prescriptive feedback of performance as it provides a 

solution to committed errors. In contrast, physical passive guidance is a purely assistive 

technique which brings the performance closer to the concept of demonstration.  

2.4.2 Information feedback 

Researchers agree that information feedback is a paramount factor for training to 

support the development of motor skills (Magill, 2007; Schmidt & Wrisberg, 2008; Utley & 

Astill, 2008). Feedback refers to the sensory information that states the outcome of a 

movement performance or the causes of that outcome to the performer. Two categories of 

feedback are distinguished: intrinsic and extrinsic feedback.  

The intrinsic feedback, sometimes called sensory feedback (Utley & Astill, 2008) or 

inherent feedback (Schmidt & Wrisberg, 2008) refers to the perceptual sensory information 

that naturally arises from the performance of a movement. Intrinsic feedback can be 

exteroceptive in which case the information comes from sources located outside the body, or 

interoceptive, also referred as proprioceptive, in which case the information comes from 

sources located inside the body primarily based on kinesthetic and vestibular information 

cues.  

The extrinsic feedback, commonly referred as augmented feedback (Newell, 1991; 

Magill, 2007; Schmidt & Wrisberg, 2008; Utley & Astill, 2008) provides task-dependent 

information related to movement performance that supplements the available intrinsic 

information feedback by adding an external source of information. Augmented feedback, for 

example in the form of comments from an instructor, indications of performance scores and 

movement characteristics, and recorded performance in videotape format, is considered as an 

important component of motor skill training (Utley & Astill, 2008).  



Motor Skill Training using Virtual Reality and Haptic Interaction - A case study in industrial maintenance 

34 

 

Augmented feedback can be used to positively reinforce correct performance in order 

to encourage accurate performance rehearsal. It can also directly or indirectly provide error 

correction information enabling performers to minimize errors and therefore enables bringing 

movement performance closer to the objective of the action. Augmented feedback can be 

either prescriptive, which means that the information describes committed errors and 

specifies a way to solve them, or descriptive in which case the information provides only a 

description of errors produced during the performance (Schmidt & Wrisberg, 2008). 

Prescriptive augmented feedback is considered to be very useful at the early stage of learning, 

until the learner acquires the capability to interpret descriptive feedback (Schmidt & 

Wrisberg, 2008). Moreover, augmented feedback is usually believed to play an important 

motivational role in the process of motor learning. Motivation is usually considered as an 

important organismic constraint (Section 2.2.2.3), which energizes the learner to strive for the 

achievement of action’s goals (Young et al., 2001; Schmidt & Wrisberg, 2008; Utley & 

Astill, 2008).  

Augmented feedback can be concurrent, which means that it is provided during the 

performance of the movement, or terminal, in which case it is provided once the movement is 

finished. Two types of terminal augmented feedback are typically distinguished: knowledge 

of results (KR) and knowledge of performance (KP) (Magill, 2007; Schmidt & Wrisberg, 

2008; Utley & Astill, 2008). Differences between both types remain in the nature of the 

information conveyed to the performer. KR provides information about movement outcome 

or goal achievement after the completion of the movement (Schmidt & Wrisberg, 2008). For 

example, an instructor may inform a performer after the practice of an industrial maintenance 

task that the outcome of the performance is either appropriate or not. KR is considered to be 

particularly helpful when part of the intrinsic feedback is not available or too weak. However, 

sometimes KR can be redundant and augment intrinsic feedback providing sensory 

information already perceived. In contrast, KP provides prescriptive or descriptive 

information about kinematic characteristics of the movement that lead to a specific 

performance outcome (Schmidt & Wrisberg, 2008). For instance, an instructor may inform an 

operator after the completion of a polishing task that “the inclination of the tool was too 

little” (descriptive) and eventually include advices to facilitate error correction, such as the 

way the tool should be grasped to ease refinements of inclination (prescriptive). KP often 

leads to quicker achievement of objectives due to error correction information and it is 
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considered particularly useful for learning serial skills composed of complex movements on 

several degrees of freedom (Mononen, 2007; Utley & Astill, 2008).  

KP has been traditionally employed as terminal augmented feedback (Magill, 2007; 

Schmidt & Wrisberg, 2008; Utley & Astill, 2008) and several studies have extended the 

concept of providing prescriptive or descriptive augmented feedback in the form of 

concurrent KP (Konttinen et al., 2004; Mononen, 2007). In a recent study (Ranganathan & 

Newell, 2009), concurrent KP has been presented in the form of a vertical bar which showed 

in real-time about the exerted force with regards to a target force. In this thesis, a similar 

concept of augmented feedback will be used to inform about applied angle and force 

throughout part-task training (Chapter 5). Moreover, motor skill training in VR is believed to 

enable approximating the concept of KR to concurrent augmented feedback.  

Several studies have highlighted the asset of training with augmented feedback as it 

enables guiding towards the correct performance of motor skills through practice (Todorov et 

al., 1997; Young et al., 2001; for review see Wulf & Shea, 2004). However, it is believed that 

augmented feedback when provided too frequently during practice tends to generate 

dependence which impedes the processing of intrinsic information feedback (Salmoni et al., 

1984). Therefore, performers do not attempt to develop the capability to produce a movement 

on their own, and performance results tend to worsen when augmented feedback is 

withdrawn (Schmidt & Wrisberg, 2008). This has been commonly referred as the guidance 

hypothesis of augmented feedback (Salmoni et al., 1984; Schmidt & Wulf, 1997; Wulf & 

Shea, 2004; Schmidt & Wrisberg, 2008). For this reason, many studies have proposed 

scheduling augmented feedback throughout the practice period (Winstein & Schmidt, 1990; 

Wulf et al., 1998a; Mononen, 2007; Ranganathan & Newell, 2009). Nonetheless, the 

guidance hypothesis of augmented feedback is a controversial topic. Findings from these 

research studies have suggested that the effect of training motor skills with augmented 

feedback is more complex than what it seems (Wulf & Shea, 2004).  

A study conducted by Winstein & Schmidt (1990) investigated the effect of frequency 

of terminal KR to support motor learning of a lever placement task which involved 

movements on one degree of freedom. The authors compared the effectiveness of training 

with faded terminal KR which consists of providing frequent terminal KR at early stage of 

learning and gradually reducing it throughout the training, and frequent terminal KR. Their 

results showed that training with faded KR led to significantly more accurate performance 

recall when compared to that with frequent KR. These findings suggested that exposure to 
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such augmented feedback without withdrawing it throughout the learning process may have a 

detrimental effect on performance and thus confirmed the guidance hypothesis. In contrast, a 

study proposed by Wulf et al. (1998a) have not found any benefits for providing faded KR to 

novice participants during the training of complex task such as a slalom-like movements on a 

ski simulator. The authors compared the effect of providing frequent terminal KR and faded 

terminal KR equivalent to providing feedback after the completion of every two trials. A 

control group practising without augmented feedback was also considered in that experiment. 

Results highlighted undoubtedly the effectiveness of training with augmented feedback to 

support motor learning. However, faded KR did not lead to higher performance 

improvements when compared to the frequent KR condition. Similarly, Mononen (2007) 

explored the benefits of training novices on a precision rifle shooting task with all augmented 

feedback. The shooting task encompasses fine motor skills of a particular complexity as it 

required a high degree of eye-hand-arm coordination. In that study, the author looked at the 

effect of frequent and reduced exposure to terminal KP along with frequent terminal KR on 

motor learning. As in the study of Wulf et al. (1998a), results suggested a significant effect of 

augmented feedback on the acquisition of motor skills. However, no significant differences 

were found between both KP conditions. 

The findings from these studies suggested that the complexity of the task in terms of 

the number of degrees of freedom involved in the performance of the skills are determinant 

for the effectiveness of training enhanced with augmented feedback. Apparently, more 

frequent augmented feedback seems to be required for the learning of complex motor skills 

(Schmidt & Wrisberg, 2008). Although the performance of a lever placement task as that 

proposed by Winstein & Schmidt (1990) appeared to be relatively complicated, it only 

required movements on a single degree of freedom. In that sense, task complexity was 

minimum compared to those proposed by Wulf et al. (1998a) and Mononen (2007).  

Although the guidance hypothesis of KR and KP is questionable (Wulf & Shea, 

2004), Schmidt & Wulf (1997) highlighted the strong dependence trend inherent to 

concurrent augmented feedback when provided too frequently throughout training. In their 

study, Schmidt & Wulf (1997) investigated the effect of training a lever placement task with 

continuous concurrent feedback. Their results showed that performance dropped down once 

concurrent feedback was withdrawn. Continuous concurrent feedback tended to restrict motor 

learning to the extent that it hinders the processing of intrinsic feedback for the development 

of an accurate representation of the movement coordination pattern stored in motor programs 
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(Section 2.2.1.2). In a more recent study, Ranganathan & Newell (2009) have demonstrated 

that frequent concurrent KP was effective to support acquisition of motor skills throughout 

training, but resulted to be detrimental for task performance once it was withdrawn. The 

authors looked at the effectiveness of several augmented feedback conditions to support 

learning of a discrete force task which implicated movements on two degrees of freedom. 

Results showed that motor learning was significantly lower when training was enhanced with 

frequent concurrent feedback when compared to reduced and frequent terminal feedback 

conditions. These findings confirmed the strong guidance property of concurrent augmented 

feedback. On the other hand, Konttinen et al. (2004) and Mononen (2007) have shown the 

effectiveness of reduced exposure to concurrent augmented feedback to support learning of a 

rifle shooting task. The authors compared the effect of practice with concurrent auditory KP 

scheduled on half of training trials and with terminal KR. Their results showed that 

concurrent auditory KP when provided in reduced frequency led to significant performance 

improvements compared to terminal KR. These findings suggest that concurrent augmented 

feedback when provided in a reduced frequency may be an appropriate solution to the 

guidance hypothesis.  

In this thesis, a VR training system to train some of the motor skills that are relevant 

in fine grinding and polishing tasks will be evaluated (Chapters 6 & 7). The suggested 

training will follow a training program which will enable scheduling concurrent KR and KP 

and terminal KR throughout part-task training, and concurrent and terminal KR throughout 

whole-task training.  

2.5 CONCLUSION 

In this chapter, several relevant concepts for the acquisition of motor skills have been 

reviewed. For the sake of providing an explicit definition of motor skill terminologies, a 

review of most common classifications of motor skills has first been conducted. Second, 

typical theorical approaches which define motor learning as an internal process associated to 

practice giving emphasis to the gradual consolidation and automatization of motor skills have 

been described. Third, emphasis has been given to the design of the training experience 

introducing two fundamental training methods: part-task & whole-task training. Proper 

combinations of these training methods are believed to be particularly profitable to enhance 

training of motor skills involved in the performance of fine grinding and polishing tasks. 



Motor Skill Training using Virtual Reality and Haptic Interaction - A case study in industrial maintenance 

38 

 

Finally, relevant assistance techniques such as physical guidance and augmented feedback to 

support motor learning throughout training have been approached. A literature review has 

enabled focusing on the limitations of these techniques. Previous research studies have 

demonstrated that both techniques are beneficial for motor learning to the extent that they 

enable guiding the practice of motor skills towards correctness. However, when provided too 

frequently, performers tend to become dependent to them. Thus, too frequent exposure to 

these techniques may prevent the processing of intrinsic information feedback required for 

the development of accurate motor programs. For this reason, physical guidance and 

augmented feedback are recommended to be frequently provided at the early stage of 

learning, but gradually withdrawn once performance gains in proficiency.  

In this thesis, a VR training system enhanced with haptic force feedback will be 

presented along with a training toolkit which will enable building training programs to 

support the development of fine motor skills that are relevant in fine grinding and polishing 

tasks (Chapter 5). A training program will be designed for the evaluation of the VR training 

system (Chapters 6 & 7). That training program will allow applying fundamental training 

methods such as part-task and whole-task training to the context of VR training. On the one 

hand, part-task training will be inspired by fractionation of angle and force skills and 

simplification of the motion pattern at early stage of learning (Section 2.3.2). The integration 

of part-task components will be based on the progressive-part method (Section 2.3.3). On the 

other hand, whole-task training will allow performing the suggested tasks as in the real world. 

Moreover, both training methods will be enhanced with concurrent and terminal augmented 

feedback.  
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Chapter 3. Motor Skill Training in 

Virtual Reality with Haptics 

The potential of VR technologies to support learning and training in educational 

(Bossard et al., 2008), industrial (Mujber et al., 2004) and clinical fields (Van der Meijden & 

Schijven, 2009; Coles et al., 2011) has been widely investigated. VR can provide support to 

fundamental training methods such as part-task and whole-task training (Section 2.3), 

demonstrating effective motor learning and transfer to real operational environments. VR also 

offers the possibility to enhance motor learning with augmented feedback (Section 2.4.2) 

which is often not available in the real world. Moreover, VR technologies such as haptic 

devices which are able to provide force feedback on several degrees of freedom enable 

interacting within virtual environments alike in real physical contexts.   

This chapter describes the research background for the use of VR and haptic force 

feedback to support the development of a VR training system which aims to train and transfer 

angle and force skills to the performance of fine grinding and polishing tasks in real operating 

environments. Figure 6 presents the components that are relevant to motor skill training in 

VR.  
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Figure 6. Diagram of components that are relevant to motor skill training in VR. 

This chapter presents a literature review of: 

1. The current state of motor skill training in VR giving emphasis to the effect of 

haptic force feedback to improve interaction within virtual environments 

(Section 3.1).  

2. The application of relevant concepts employed in conventional motor skill 

training such as fundamental training methods (Section 3.2) and augmented 

feedback (Section 3.3), to the context of VR training. 

3. The validity of transferring motor skills from virtual to real environments 

(Section 3.4). 

3.1 HAPTICS: INTRINSIC FEEDBACK VS. AUGMENTED FEEDBACK 

Although many VR simulators, especially those dedicated to motor skill training for 

clinical procedures, are devoid of haptic force feedback, significant training effect (Bajka et 

al., 2009; Selvander & Åsman, 2012) and effective transfer of skills to operating room 

contexts (Jordan et al., 2001; Ahlberg et al., 2002; Seymour et al., 2002) have been 

demonstrated. However, the absence of haptic force feedback has been often considered as a 
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drawback in VR training simulations (Verdaasdonk et al., 2006; Bajka et al., 2009). The 

addition of haptic force feedback is believed to be profitable to the extent that it enables 

reducing the need of conventional training on patients, improving motor skills competence 

and enabling effective transfer of motor skills to real world situations (Van der Meijden & 

Schijven, 2009; Coles et al., 2011). However, the use of haptic technologies for training 

technical motor skills such as those required in industrial procedures has not been yet 

generalized and remains for the moment, commercially unsuccessful. Nonetheless, according 

to Abate et al. (2009), industries show an increasing interest in employing computer-aided 

solutions to sustain competitively their activities and the addition of haptic force feedback is 

believed to be relevant for training procedures that require human intervention such as highly 

skilled maintenance operations. 

On the one hand, haptic force feedback is considered to bring the concept of VR 

interaction closer to realistic physical models supplying intrinsic information that cannot be 

provided otherwise (Abate et al, 2009; Aziz & Mousavi, 2009; Dalto et al., 2010). On the 

other hand, haptic force feedback allows improving motor learning through VR training 

proposing augmented feedback (Section 2.4.1) in the form of an assistance technique (Wang, 

Y. et al., 2006; Srimathveeravalli et al., 2007; Hassan & Yoon, 2010a). 

3.1.1 The role of haptics as intrinsic feedback 

Despite a growing interest for the use haptic force feedback in VR simulations since 

the beginning of the last decade, few research studies have compared the effectiveness of VR 

training with and without haptic force feedback (Basdogan et al., 2004; Van der Meijden & 

Schijven, 2009). In this thesis, VR training enhanced with haptic force feedback is believed 

to be profitable for motor learning enabling the development of novel motor programs 

(Section 2.2.1). 

Moody et al. (2001) demonstrated that the addition of haptic force feedback while 

training suturing tasks in a virtual environment led to significant performance and accuracy 

improvements in task completion time and exerted forces on tissues.  

Tholey et al. (2005) analyzed the effect of providing haptic force feedback in a 

palpation task performed in robotic assisted surgery (RAS) procedures which usually lack 

haptic intrinsic information. Additional force feedback was found to positively affect task 

performance at all levels of expertise providing intrinsic information that was essential for 

accurate characterization of tissue stiffness. Similarly, Wagner et al. (2002; 2007) have 
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shown how the performance of a RAS dissection task for which applied forces are relevant, is 

improved when haptic intrinsic information was provided through a haptic device. In 

concurrence with Tholey et al. (2005), the addition of haptic force feedback was shown to 

significantly improve the accuracy of applied forces and decrease committed errors at all 

stages of motor learning (Wagner et al., 2007). Nonetheless, haptic force feedback appeared 

to be particularly profitable at an early learning stage. Several research studies (Ström et al., 

2006; Zhou et al., 2012) have supported similar statements showing that haptic force 

feedback enabled moving performance further on the learning curve at early learning stage.  

Panait et al. (2009) remarked that the effectiveness of haptic force feedback is 

dependent on the nature of the task. In their study, they investigated the effect of providing 

haptic force feedback on the performance of manipulation and force-based tasks throughout 

VR training. No significant training effect of haptic force feedback task was found on a basic 

manipulation task. However, performance of a force-based task appeared to be significantly 

improved by haptic force feedback. These findings suggest that haptic force feedback is 

particularly beneficial for training force control-based tasks. 

The realism issue of haptic force feedback has been approached through several 

research studies. Realistic haptic force feedback is considered to provide important intrinsic 

information that could not be emulated otherwise. Haptic force feedback has been shown to 

increase the overall realism of VR simulations and is crucial for an effective practice of 

force-based skills (Moody et al., 2001; Zhang et al., 2009; De Visser et al., 2011; Zhou et al., 

2012). However, there is very little knowledge concerning the degree to which the realism of 

haptic force feedback supports effective motor learning (Van der Meijden & Schijven, 2009). 

Several studies have pointed out that the lack of realism of haptic interaction in VR training 

could hamper the development of motor skills (Adams, J. R. et al., 2001; Zhang et al., 2009; 

Muresan III et al., 2010). Adams, J. R. et al. (2001) investigated the effect of haptic 

interaction in VR training on an assembly task. They found that a low degree of realism of 

the haptic interaction was a factor for a weak motor learning. In more recent studies, Zhang et 

al. (2009) and Muresan III et al. (2010) reported that the lack of realism of haptic interaction 

in VR training with regards to conventional training techniques was critical for the 

effectiveness of motor learning in VR.  

Haptic force feedback has been shown to positively affect the performance of motor 

coordination and more particularly force control-based tasks at all levels of expertise. Thus, 

haptic force feedback enables the development of novel motor programs and also allows 
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generalizing existing motor programs with haptic intrinsic information. Moreover, haptic 

force feedback has been shown to be particularly profitable at an early learning stage 

supporting effectively motor learning for force control-based tasks. However, the 

effectiveness of VR training has been argued to strongly depend on the degree of realism of 

haptic interaction. Nonetheless, the degree of realism of haptic interaction required to ensure 

effective VR training is relatively hard to determine.  

This work will present a VR training system enhanced with haptic force feedback 

which aims to support the successful development of angle and force skills required in the 

performance of fine grinding and polishing tasks (Chapter 5). The effectiveness of such 

system to provide realistic haptic intrinsic information will be highlighted among other things 

through the collection of qualitative data in the experimental study described in chapter 7.  

3.1.2 The role of haptics as augmented feedback 

Apart from simulating intrinsic information as perceived in the real world, haptic 

force feedback has also been extensively employed in VR training to provide augmented 

feedback in the form of an active physical guidance that aids to the performance of complex 

tasks for which motor coordination in term of position and orientation, and force control are 

important. For instance, Solis et al. (2002, 2003), Eid et al. (2007), Šustr (2010) and Nishino 

et al. (2011) presented several implementations of haptic-based guidance that provide a 

correcting force which rectifies the user’s movement and actively support the development of 

motor coordination patterns for the handwriting of calligraphy characters. Basdogan et al. 

(2004) proposed a model of active haptic guidance for a needle insertion procedure. They 

emulated the force produced by an instructor’s hand correcting needle position mismatches. 

Morris et al. (2006) presented a haptic physical assistance technique that enables providing 

adjustment of exerted forces in bone drilling operations. Wang, Y. et al. (2006, 2009) 

presented a haptic arc welding training method that provides an active haptic guidance to 

emulate human tutoring on welding distance, speed and electrode position along a predefined 

trajectory. Gutiérrez et al. (2010) have developed a VR multimodal training system to 

practice fine motor skills involved in delicate manipulation tasks, which proposed among 

other things, a haptic-based guidance that provides force constraints to attract or repel an 

individual’s hand towards a target area. 

In the context of this thesis, active haptic guidance is considered as an instantaneous 

and prescriptive augmented feedback equivalent to concurrent Knowledge of Performance 
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(KP) (Section 2.4.2). It supports proactive motor learning and physically steers movement 

performance towards correctness when it becomes erroneous.  

Several research studies have investigated the value of such haptic augmented 

feedback to support effective motor learning for force control and motor coordination-based 

tasks. Morris et al. (2007) have demonstrated that active haptic guidance in the form of a 

correcting force of opposite direction enabled effective learning of vertical force patterns 

while being passively guided along a horizontal trajectory in a proactive manner. However, 

several research studies have reported the complexity of interpreting active haptic assistance 

at an early learning stage (Saga et al., 2005; Srimathveeravalli & Thenkurussi, 2005; Esen et 

al., 2008a; Esen et al., 2008b). Esen et al. (2008a, 2008b) have designed an active haptic 

assistance paradigm in the form of a correcting force provided by a human instructor in order 

to learn force patterns of similar complexity as those proposed by Morris et al. (2007).  Saga 

et al. (2005) and Srimathveeravalli & Thenkurussi (2005) have presented two VR training 

systems that support learning of handwriting of calligraphic characters using active haptic 

guidance on the performance of character shape and exerted pencil pressure. Both studies 

found that active haptic assistance led to high accuracy in path tracing but low efficiency to 

recall force patterns. These findings suggest that when the task demand is high, for example 

when motion is actively engaged, active haptic guidance is not sufficient to support the 

learning of forces.  

Avizzano et al. (2002) and Rodriguez et al. (2010) have demonstrated that the 

addition of active haptic guidance for training respectively bi-dimensional and tri-

dimensional path tracing produce significant performance improvements compared to more 

conventional training assistance based on visual cues. However, Yang et al. (2008) found that 

active haptic guidance tended to discourage proactive error correction, and therefore 

hampered motor learning. Similarly, Liu et al. (2005) have given emphasis to the outcome of 

the dependence trend of the physical assistance technique in the form of a rapid deterioration 

of tri-dimensional trajectory performance when active haptic guidance is withdrawn. For this 

reason, haptic augmented feedback should be provided differently in order to encourage 

proactive motor learning. However, there is currently no clear compromise concerning an 

effective way of providing haptic augmented feedback throughout VR training. Rodriguez et 

al. (2010) compared the effectiveness of active haptic assistance provided continuously and 

systematically when error rate became too high, to support tri-dimensional trajectories 

learning, but did not find any significant differences. Similarly, Li et al. (2009) proposed a 
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gradual withdrawing of active haptic guidance in the course of VR training in order to 

support the performance of a placement task (O’Malley et al., 2006). However, no higher 

motor learning has been observed compared to non-assisted practice.  

Several research studies have discussed the value of active haptic guidance to support 

motor learning in motor coordination and force control-based tasks. However, no clear 

consensus has been apparently found concerning an effective provision of active haptic 

assistance.  

As mentioned previously, this work aims to develop and evaluate a VR training 

system to train angle and force skills required for the performance of fine grinding and 

polishing tasks. Nonetheless, considering the lack of effectiveness of active haptic guidance 

to support force skill learning when motion is engaged, and the absence of consensus to 

effectively provide haptic assistance, the implementation of such haptic augmented feedback 

is discarded. 

3.2 PART-TASK TRAINING VS. WHOLE-TASK TRAINING 

Conventional training based on the whole-task training method is often too 

challenging for the development of novel clinical and technical motor skills (Section 2.3). 

Moreover, such training is often conducted in conditions in which the safety of patients or 

operators is compromised. For this reason, despite the importance of repetitive tasking is 

paramount for motor learning, it remains delicate. Furthermore, prior to whole-task practice, 

clinical motor skills are frequently isolated in a part-task training procedure (Section 2.3) in 

order to be practised separately throughout basic exercises carried out on physical training 

workbenches, which contain inanimate objects and lack the feel and the dynamics of handling 

real tissues (Fried, G. M. et al., 2004; Ritter & Scott, 2007; Pan et al., 2011). Such training 

workbenches are usually referred to as part-task trainers (Youngblood et al., 2005) and 

remain critical with regards to the objective assessment of performance metrics (Pan et al., 

2011). 

VR training improved with haptic force feedback is believed to efficiently support 

part-task and whole-task training procedures offering the possibility of repetitive and safe 

tasking conducted in realistic simulated environments with variable degrees of complexity 

(Bossard et al., 2008; Johannesson et al., 2010; Mishra et al., 2010; Pan et al., 2011; Bhatti et 

al., 2012). Moreover, VR training enables objective measures of performance and accuracy 
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for real-time and terminal evaluation (Haque & Srinivasan, 2006; Van der Meijden & 

Schijven, 2009; Pan et al., 2011; Rhienmora et al., 2011). Performance and accuracy 

assessment can be provided in the form of augmented feedback (Section 3.3) which aims to 

support motor learning during and after VR tasking (Gopher, 2012).  

Several developments have supported motor learning for the performance of 

educational, medical and industrial procedures by applying fundamental training methods 

such as part-task and whole-task training to the context of VR (Basdogan et al., 2004; Morris 

et al., 2006; Abate et al., 2009; Wang, Y. et al., 2009; Gutiérrez et al., 2010; Nishino et al., 

2011; Sung et al., 2011). Table 2 presents a review of the current state of the art of training 

methods and augmented feedback employed in VR training to support motor learning in 

dentistry, educational, industrial and medical fields. The importance of augmented feedback 

in VR training will be argued in section 3.3.  

As it will be discussed later, this thesis presents a VR training system which enables 

applying fundamental training methods such as part-task and whole-task training along with 

the provision of augmented feedback in order to support the development of those motor 

skills that are required in specific industrial maintenance tasks.  

 

 



 

 

 

Table 2. Current status of motor skill training in VR. 

Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Dentistry task Whole-task 
Training 

 Perceptual 
force skills 

 Assess of the realism of the VR 
training simulator. 

Realistic simulation of 
periodontal task but some 
limitations in the collision 
model of the 3 DOF haptic 
interaction were found. Thus, a 
6 DOF haptic interface would 
be required. 

Steinberg et al. 
(2007) 

Dentistry task: 
access opening 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

Terminal KR Evaluate the effectiveness of the 
repetitive practice of an access 
opening dental task throughout 
VR training. 

VR training leads to significantly 
shorten completion time and 
lead to significant force 
refinements. 

Suebnukarn et 
al. (2010) 

Dentistry task: 
teeth drilling in 
crown 
preparation 
procedure 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

Terminal KP 
& KR 

Evaluate the accuracy of the VR 
training system to assess skills 
involved in a crown preparation 
procedure. Performance from 
expert dentists and novices was 
compared.  

The VR training system enables 
discriminating different level of 
expertise. Also,  the system has 
demonstrated a high degree of 
acceptance from experts 

Rhienmora et al. 
(2011) 

Educational task: 
assembly of 3D 
LEGO plane 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation)  

 Present a VR training simulation 
for assembly task and 
assessment of the value of force 
feedback in assembly  

VR training with haptics 
enables the early formation of 
mental model of assembly task                                                             

Adams, J. R. et al. 
(2001) 
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Educational task: 
assembly of 3D 
pieces 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation)  

 Compare of the effectiveness of 
VR training with conventional 
training to transfer skills 
involved in a 3D puzzle assembly 
task to real world context 

VR training effectively supports 
transfer of assembly skills to 
the real world. VR training 
substantially improve task 
performance in the real world 
much better that conventional 
training. 

Oren et al. 
(2012) 

Educational task:  
handwriting task: 
Japanese 
calligraphy  

Part-task 
Training 
(Simplification) 

 Positional skills Concurrent 
KP (KP + 
Active 
guidance) 

Present and evaluate the 
effectiveness of a Japanese 
handwriting teaching system 
(Solis et al., 2002) to satisfy 
motor learning throughout the 
cognitive and associative stages.  

The implementation of 
visuohaptic information in the 
system enables to significantly 
decrease task completion time 
and performance. 

Solis et al. (2003) 

Educational task:  
handwriting task  

Part-task 
Training 
(Simplification) 

 Positional & 
force control 
skills 

Concurrent 
KP (Active 
guidance) 

Present and assess of a haptic 
teaching system to assist the 
performance of handwriting 
character shape and pencil 
pressure. 

High accuracy in path tracing 
but low efficiency to recall 
pressure patterns. 

Saga et al. (2005) 

Educational task:  
handwriting task: 
Chinese 
calligraphy 

Part-task 
Training 
(Simplification) 

 Positional & 
force control 
skills 

Concurrent 
KP (Active 
guidance) 

Present a Chinese calligraphy VR 
training system 

The training system is helpful to 
reduce handwriting error and 
to improve writing speed. 

Wang, D. et al. 
(2006) 

Educational task:  
handwriting task: 
multi-language 
calligraphy 

Part-task 
Training 
(Simplification) 

Repetitive-part Positional skills Concurrent 
KP (Active 
guidance) 

present and assess a 
handwriting learning and 
evaluation tool which proposes 
task simplification through 3 
modes of guidance (none, 
partial & full) to support motor 
learning(Mansour et al., 2007), 
to transfer handwriting skills 

The system enables 
transferring handwriting skills 
to the performance of a writing 
task on a sheet of paper. 

Eid et al.   (2007 ) 
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Educational task:  
handwriting task: 
artistic calligraphy 

Part-task 
Training 
(Simplification) 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

 Present a simulation of 
calligraphic creation called 
Haptic Calligraphy 

No experimental study - 
development with no aim of 
training (only for artistic 
performance) 

Šustr (2010) 

Educational task:  
handwriting task: 
Japanese 
calligraphy 

Part-task 
Training 
(Simplification) 

Repetitive-part Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

Concurrent 
KP (Active 
guidance) 

Assess the realism of a haptic-
based system for learning 
handwriting of calligraphic 
characters and explore the 
effectiveness of passive & active 
haptic guidance to support 
motor learning.  

The system provide realistic 
simulation of handwriting task 
and both guidance techniques 
led to improvements of writing 
speed although passive 
guidance was more effective. 

Nishino et al. 
(2011) 

Industrial task: arc 
Welding Task 

Part-task 
Training 
(Simplification) 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

Concurrent 
KP (KP + 
Active 
guidance) 

Present a part-task training 
method to practice arc welding 
using realistic haptic force 
feedback to simulate the 
interaction of a welding 
electrode on a metal workpiece 
in a virtual environment.  

No experimental results have 
been provided. 

Wang, Y. et al. 
(2006, 2009) 

Industrial task: 
assembly of peg 
on wooden table 

Part-task 
Training 
(Simplification) 

 Motor 
coordination 
skills (position) 
for placement 
task 

 Present a bi-manual Mixed 
Reality assembly training system 
enhanced with passive haptic 
guidance, and conduct a 
usability test.  

Passive haptic guidance was an 
efficient technique to support 
placement in assembly 
procedure 

Ott et al. (2007) 

Industrial task: 
assembly for 
maintenance of 
aircrafts  

Part-task 
Training 
(Simplification) 

 Motor 
coordination 
(position, 
orientation) for 
assembly 

 Present a VR training system to 
approach path planning and in 
assembly/disassembly of 
mechanics in aircraft 
maintenance procedures.  

No experimental results on 
training have been provided. 

Hassan & Yoon, 
(2010a, 2010b)  
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Industrial task: 
assembly/disasse
mbly for 
maintenance and 
repairing task in 
aerospace 
industry 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation)  

 Present a visuo-haptic VR 
system used to carry out among 
others, simulations of assembly, 
disassembly and repairing tasks 
during maintenance operations 
targeted to the aircraft industry.  

No experimental results on 
training have been provided. 

Abate et al. 
(2009) & Nappi 
et al. (2009) 

Industrial task: 
assembly task in 
mechanical car 
industry 

Part-task 
Training 
(Simplification) 

Repetitive-part procedural 
motor 
coordination 
skills  (position, 
orientation) 

Terminal KR Present an interactive training 
system (Bhatti et al., 2008) to 
support learning of assembly 
sequences. VR training occurs 
through an integration of 
simplified part-task which 
included various degrees of 
difficulties to whole-task. A user 
evaluation test was carried out  

The VR training system was 
user-friendly and realistic. 

Bhatti et al. 
(2009) 

Industrial task: 
assembly in 
industrial 
maintenance 
operations 

Part-task 
Training 
(Simplification) 

Repetitive-part 
(Rodriguez et 
al., 2010)  

Procedural, 
bimanual 
motor 
coordination 
(position, 
orientation) & 
force control 
skills for 
assembly 

Concurrent 
KP (Active 
guidance) 

Present a VR training system 
that aim to support transfer of 
procedural, fine motor skills and 
bi-manual coordination skills 
that are relevant for assembly 
and maintenance operations. 

No experimental results on 
training have been provided. 

Gutiérrez et al. 
(2010) 

Industrial task: 
assembly for 
maintenance 
tasks of nuclear 
reactor 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation) for 
assembly 

 Present a VR simulator for 
procedures training  in complex 
manufacturing tasks as those 
performed during the remote 
handling maintenance of the 
ITER 

No experimental results on 
training have been provided. 

Hermskerk et al. 
(2011) 
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Industrial task: 
assembly for 
maintenance of 
aircraft engines 

Part-task 
Training 
(Simplification) 

 Motor 
coordination 
(position, 
orientation) for 
assembly 

Concurrent 
KP (Active 
guidance) 

Present a VR system which 
aimed to train on engines 
assembly for maintenance 
procedures. Engine components 
motion was supported by active 
haptic guidance. 

No experimental results have 
been provided. 

Lu et al. (2012) 

Industrial task: 
electronic 
component 
soldering 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

 Present a preliminary 
development of a VR training 
system to practice soldering 
skills. 

No experimental results on 
training have been provided. 

Sung et al. (2011) 

Industrial task: 
forklift driving 

Whole-task 
Training 

 Motor 
coordination 
skills (position, 
orientation) for 
handling task 

 Present and evaluate a VR 
haptic-based system for training 
non-motorized forklift driving.  

Forklift driven with haptics was 
a realistic interaction paradigm 
compared to joystick driving. 

Martin et al. 
(2012) 

Industrial task: 
polishing and 
grinding task 

Part-task 
Training 
(Simplification) 

 Force control 
skills 

Concurrent 
KP & 
Concurrent 
KR 

Present a VR training system for 
machine operators performing 
polishing and grinding tasks, and 
explore the effect of path 
constraint on applied force. 

Applied forces were more 
stable when path relief was 
more constant. 

Balijepalli & 
Kesavadas (2003)  

Industrial task: 
metal machining 
(grinding, cutting, 
pressing, 
milling….) 

Whole-task 
Training 

 Force control 
skills 

 Present the Virtual Technical 
Trainer (Mellet-d’Huart et al., 
2004) using haptic and pseudo 
haptic feedback for training 
milling techniques (process of 
grinding, cutting, pressing, or 
crushing in a mill).   

The force feedback was well 
appreciated at early stage of 
learning. However, the grasping 
of the haptic device was not 
satisfactory  

Crison et al. 
(2004) 
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Industrial task: 
turning machining  
operation 
(cutting-grinding) 

Whole-task 
Training 

 Force control 
skills 

 Present a VR system to practice 
turning operation. 

No experimental results have 
been provided. 

He & Chen 
(2006) 

Medical task: 
palpation task in 
cardiovascular 
surgery 

Whole-task 
Training 

 Perceptual 
force control 
skills 

 Present a haptic simulator for 
learning palpation of aorta in 
cardiovascular surgery and test 
the value of the system for 
stiffness recognition 

The VR system was perceived 
as realistic as Haptic interface 
enabled applied force close to 
real force model.  
No experimental results on 
training have been provided. 

Nakao et al. 
(2003) 

Medical task: 
Palpation task of 
spine bone 

Part-task 
Training 
(Simplification) 

 Positional & 
force control 
skills 

Terminal KR 
(on demand) 

Explore the effect of training on 
palpation diagnosis with haptic 
playback which consists of 
passive haptic guidance that 
allows following and feeling an 
expert’s motions. 

Haptic playback led to a 
significant training effect. 

Williams II et al. 
(2004a, 2004b)  

Medical task: 
Palpation task of 
breast tumour 

Whole-task 
Training 

 Perceptual 
force control 
skills 

 Present a VR system which 
supports training of palpation of 
breast for tumor identification, 
and compare performance of 
experts and non-experts 

Experts have committed less 
error in tumor identification 
than non-experts. 

Alhalabi et al. 
(2005) 

Surgery task: 
catheter Insertion 
in vessels 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

 Present a VR Catheter Insertion 
simulator 

No experimental results on 
training have been provided 
but issues of realism of the 
haptic force feedback have 
been highlighted. 

Zorcolo et al. 
(1999) 
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Surgery task:  
catheter insertion 

Part-task 
Training 
(Simplification) 

 Force control 
skills 

Concurrent 
KP (Active 
guidance) 

Present a framework for training 
Minimal Invasive Surgery task in 
VR with haptic force feedback. 

No experimental results have 
been provided. 

Basdogan et al. 
(2004) 

Surgery task: 
injection & 
dissection in 
endoscopic sinus 
surgery 

Part-task 
Training 
(Simplification) 

Repetitive-part Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

Terminal KP Explore the face and construct 
validity and the effectiveness of 
a VR training simulator for sinus 
surgery to transfer skills from VR 
to real world context. The VR 
simulator support training 
through 3 levels of complexity. 

Face validity as the level of 
realism of virtual model was 
found. Construct validity as the 
ability to differentiate between 
several levels of expertise was 
reported.  
VR training alludes a positive 
transfer from VR to real world 
context. 

Fried, M. P.  et 
al. (2005) 

Surgery task:  
intravenous 
catheterization 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

Concurrent 
KR 

Assess a VR training system for 
intravenous catheterization 
skills. They found that VR 
practice can be useful as a 
complement to RW practice (on 
plastic arm) 

VR practice was found to be a 
useful complement to 
conventional training. 
However, the interaction within 
the system did not look realistic 
enough.  
A plastic arm as support would 
have been appreciable for the 
immersion.   

Johannesson et 
al. (2010) 

Surgery task: 
renal access 
procedure - 
catheter 
placement 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation) 

 Investigate the content validity 
of a VR training simulator for 
renal access training by 
comparing with conventional 
training technique on 
anesthetized porcine model. 

In the overall, conventional 
training technique provides 
more realistic training 
conditions. However, VR 
training shows the advantage 
of several rehearsal considering 
several levels of difficulties 

Mishra et al. 
(2010) 
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Surgery task: 
bone needle 
insertion, syringe 
positioning and 
injection in 
vertebra-plasty 
surgery  

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

 Present a VR training system for 
bone needle insertion task in 
vertebra-plasty procedure. 

No experimental results have 
been provided. 

Chui et al. (2006) 

Surgery task: 
bone-pin insertion 

Whole-task 
Training 

 Force control 
skills 

Terminal KR Investigate to which degree 
training on bone pin placement 
task in VR is affected by varying 
stiffness models, and assess the 
effectiveness of such training to 
transfer force skills to the real 
world. 

Augmented stiffness model led 
to similar performance than 
normal haptic force feedback. 
However, degraded force 
feedback led to worst 
performance.  

Edmunds & Pai 
(2008) 

Surgery task: 
bone drilling 

Part-task 
Training 
(Simplification) 

Repetitive-part Force control 
skills 

Concurrent 
KP & 
Terminal KR 

Present a VR training system  
which propose a training 
framework to practice force 
skills for bone drilling procedure 
with a teaching mode with 
concurrent KP (force indicator, 
drilling velocity bar graph, 
drilling acceleration bar graph, 
acoustic force indicator) and KR 
(drilling end-position warning 
signal) and a simulator mode 
with KR  (drilling end-position 
warning signal). The authors 
explored the effect of visual, 
acoustic KP and haptic force 
feedback on training 
performance.  

Visual performance indicators 
are helpful but trainees tended 
to become easily dependent to 
apply correct force.  
Acoustic feedback did not have 
a dependence trend.  
Additional haptic DOF increase 
realism and provide a better 
understanding of the skill to 
perform. 

Esen et al. (2004) 
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Surgery task: 
temporal bone 
drilling  

Part-task 
Training 
(Simplification) 

 Force control 
skills 

Concurrent 
KP (Active 
guidance) 

Present and investigate the 
construct validity of a VR 
training simulator for bone 
surgery which enable evaluation 
and feedback performance 
information and assistance of 
learner using haptic playback 
mentoring 

Expert surgeons should 
perform much better than 
novices.  
Construct validity of the VR 
training system has been 
found.  

Morris et al. 
(2006) 

Surgery task: ear 
bone drilling 

Part-task 
Training 
(Simplification) 

 Force control 
skills 

Concurrent 
KP  

Compare the effectiveness of a 
VR bone drilling simulator with 
conventional training technique 
to transfer force skills required 
in ear surgery to real world 
context.  

VR training was promising as it 
enabled participants to start 
out further on the learning 
curve.  

Sewell et al. 
(2007) 

Surgery task: 
bone drilling for 
reduction in oral 
surgery 

Part-task 
Training 
(Simplification) 

Repetitive-part Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

Concurrent 
KR 

Look at the effectiveness of a VR 
simulator for training bone 
reduction by drilling, to transfer 
skills to real world context.  The 
training method proposed 3 
three levels of difficulties (basic, 
advanced, examination).  

Motor skills practiced on the VR 
simulator can be efficiently 
applied on cadaveric models. 

Von Sternberg et 
al. (2007) 
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Surgery task: 
bone drilling 

Part-task 
Training 
(Simplification) 

Repetitive-part Force control 
skills 

Concurrent 
KP (KP + 
Active 
guidance) 

Present a force skill VR training 
system based on online haptic 
collaboration with an 
experienced instructor for bone 
drilling task and investigate most 
appropriate assistance 
technique (verbal, passive & 
active guidance). 

All methods speed up the 
acquisition of force skill, but 
the verbal method appeared to 
be the most effective.  
Passive haptic guidance was 
effective to reproduce 
accurately force pattern, but 
learning usually occurred 
passively.  
Active haptic guidance 
remained difficult to interpret 
and more practice was needed 
to get used to it. 

Esen et al. 
(2008a, 2008b)  

Surgery task: 
spine drilling and 
screw placement 
tasks in vertebra-
plasty surgery  

Part-task 
Training 
(Segmentation) 

 Force control 
skills 

Concurrent 
KR 

Explore the learning effect of a 
VR part-task training simulator 
for bone drilling task in vertebra-
plasty procedure.  

A significant learning effect was 
found. 

Luciano et al. 
(2012) 

Surgery task: 
grasping and 
placing gallstones 
in an bag, running 
the bowel, and 
clipping and 
cutting an artery 

Part-task 
Training 
(Simplification & 
Segmentation) 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

 Compare the effectiveness of a 
part-task trainer laparoscopic 
simulator with conventional 
training technique and 
investigate the effectiveness to 
transfer surgical skills to a real 
world context. 

In the overall, VR part-task 
training system enabled a 
significant transfer of surgical 
skills to real world context 
compared to conventional 
training technique. 

Youngblood et 
al. (2005) 
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Surgery task: 
grasping, 
Electrocautery 
and cutting task 

Part-task 
Training 
(Simplification) 

Repetitive-part Motor 
coordination 
(position, 
orientation) 

 Assess the effectiveness and aim 
to find the construct validity of a 
VR training simulator which 
proposed several levels of 
difficulties of a laparoscopic 
organ removal procedure. 

The VR training system 
displayed construct validity as 
significant differences were 
found between all levels of 
expertise.  
VR training appeared 
particularly helpful at early 
learning stage.            

Aggarwal et al. 
(2006) 

Surgery task: 
Clipping and 
cutting in 
gallbladder, 
Clipping and 
cutting with two 
hands, dissection 
& Gallbladder 
separation 

Part-task 
Training 
(Segmentation) 

Part-whole Motor 
coordination 
(position, 
orientation) & 
force control 
skills for 9 
basic surgery 
skills 

 Investigate the construct validity 
of training curriculum 
implemented on a VR training 
system which aims the 
acquisition of technical skills for 
laparoscopic cholecystectomy 
through simplified and 
segmented part-task to whole-
task training.  

Construct validity as the ability 
to differentiate between 
several levels of expertise was 
found for most of technical 
skills.   
VR training led to significant 
learning effect for novices.                                                                                  

Aggarwal et al. 
(2009) 

Surgery tasks 
(camera 
navigation, 
clipping, cutting, 
peg transfer, knot 
tying, and needle 
driving) 

Part-task 
Training 
(Simplification & 
Segmentation) 

  Motor 
coordination 
(position, 
orientation) & 
force control 
skills from 6 
essential 
surgery tasks 

Terminal KR Explore the construct validity of 
a VR system which support basic 
surgery skills training through 
task simplification (3 levels of 
complexity) 

Significant differences in peg 
transfer and cutting tasks  were 
found depending between 
expert and novice 

Iwata et al. 
(2011) 

Surgery task: 
laparoscopic 
rectal procedure - 
cutting task 

Whole-task 
Training 

 Surgical skills  Present the development of a 
realistic VR simulator for training 
the performance of rectal 
surgery. 

No experimental results have 
been provided. 

Pan et al. (2011) 
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Task Training Method Integration 

method to 

whole-task 

Practiced skills Augmented 

Feedback 

Study purpose Conclusion Authors 

Surgery task: 
Prostate excision 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

 Present a VR simulator for 
training prostate surgery and 
conduct a complete validity 
study (face, content, construct, 
transfer to operation room). 

Face validity was found as 
experts believed that VR 
training in the simulator could 
be profitable. Content validity 
was found as the simulation 
was realistic to mimic real task 
complexity.  
Construct validity of the system 
was found and a significant VR 
training effect allowed a 
successful transfer of surgical 
skills to real world conditions.  

Kalltröm (2010) 

Surgery task: 
suturing 

Whole-task 
Training 

 Force control 
skills 

 Evaluate the value of haptic 
force feedback in a training a 
suturing task in VR 

Significant performance and 
accuracy improvements in term 
of exerted forces on tissues and 
task completion time were 
reported 

Moody et al. 
(2001) 

Surgery task: 
suturing 

Whole-task 
Training 

 Motor 
coordination 
(position, 
orientation) & 
force control 
skills 

 Present a VR training simulator 
for suturing task 

No experimental results have 
been provided. 

Webster et al. 
(2001) 
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Fundamental training methods applied to VR training have been found to efficiently 

support the acquisition of motor skills. On the one hand, whole-task training has been shown 

to enable the development of motor programs that lead to accurate performance of motor 

skills involved in dentistry (Suebnukarn et al., 2010; Rhienmora et al., 2011), assembly 

(Adams, J. R. et al., 2001; Oren et al., 2012) and surgical tasks (Moody et al., 2001; 

Johannesson et al., 2010; Kalltröm, 2010).  

On the other hand, part-task training based on the segmentation of sequential motor 

skills (Section 2.3.2) has been commonly employed in surgical procedures and has been 

shown to be effective for motor learning (Youngblood et al., 2005; Aggarwal et al., 2009; 

Iwata et al., 2011, Luciano et al., 2012). However, to the best of the author's knowledge, few 

research studies have defined a full operative training procedure to support motor learning 

through part-whole integration method (Section 2.3.2). Only Aggarwal et al. (2009) have 

presented a training program in which segmented part-task components were integrated into a 

whole-target task.  

Part-task training suggesting the simplification of tasks in the form of a reduction of 

coordination requirements by using physical assistance techniques or a modification of 

environment characteristics defining several levels of difficulty (Section 2.3.2) has been 

widely employed to support motor learning in calligraphy handwriting simulators (Solis et 

al., 2003; Wang, D. et al., 2006; Eid et al., 2007), assembly procedures (Bhatti et al., 2009), 

and surgery tasks such as palpation (Williams II et al., 2004a; Williams II et al., 2004b) and 

bone drilling operations (Aggarwal et al., 2006; Von Sternberg et al., 2007; Esen et al., 

2008a; Esen et al., 2008b; Iwata et al., 2011). Nonetheless, in some particular cases, the 

reduction of coordination requirements has been shown to be not sufficient to support the 

development of concurrent motor skills such as motor coordination and force skills (Saga et 

al., 2005; Srimathveeravalli & Thenkurussi, 2005). Moreover, several research studies have 

defined training strategies which support motor learning throughout repetitive integration of 

part-task components (Section 2.3.3) in the form of additional coordination requirements and 

task difficulty increases towards whole-target tasks (Esen et al., 2004; Aggarwal et al., 2006; 

Eid et al., 2007; Von Sternberg et al., 2007; Bhatti et al., 2009). 

On basis of the review of the available literature presented through Table 2, no 

references concerning part-task training inspired by the fractionation of simultaneous motor 

skills (Section 2.3.2) and progressive-part integration of those skills into a whole-target task 

(Section 2.3.3) have been found. Thus, the implementation of the progressive-part integration 
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of fractionized motor skills into a whole-target task would be a valuable contribution to the 

field of VR training.   

The VR training system presented in this thesis allows applying fundamental training 

methods such as part-task and whole-task training to the context of VR. Both training 

methods can be thus implemented in a training program which defines a complete training 

procedure. The effectiveness of part-task training inspired by fractionation and simplification 

techniques along with progressive-part integration, and whole-task training to support motor 

learning for fine grinding and polishing tasks will be evaluated through two experimental 

studies (Chapters 6 & 7).    

3.3 KNOWLEDGE OF PERFORMANCE VS. KNOWLEDGE OF RESULTS 

The effectiveness of augmented feedback in the form of Knowledge of Results (KR) 

and Knowledge of Performance (KP) (Section 2.4.2) in order to supplement intrinsic 

feedback with information which respectively indicate goal achievement and kinematic 

characteristics has been widely discussed (Todorov et al., 1997;  Young et al., 2001; 

Mononen, 2007; Utley & Astill, 2008). However, the guidance hypothesis of frequently 

provided augmented feedback (Salmoni et al., 1984) and its trend to hamper the processing of 

intrinsic information feedback for the development of accurate motor programs has also been 

reported throughout VR training (Wierinck et al., 2005). Nonetheless, augmented feedback is 

considered as a prominent feature of motor learning throughout VR training (Johannesson et 

al., 2010; Gopher, 2012).  

Many research studies have supported the development of complex motor skills in VR 

by providing KR and KP in a concurrent or terminal fashion. However, the identification of 

augmented feedback as KR or KP may be sometimes ambiguous depending on the training 

context. In single skill training, in which the task objective is achieved when performance of 

motor skill becomes accurate, the concepts of KR and KP may often merge. In contrast, in 

broader training contexts which implicated the performance of a complex task involving 

several motor skills, KR and KP are easily distinguishable.  

On the one hand, concurrent KP has been often provided as active haptic guidance, a 

correcting force employed when the performance of motor coordination or force control skills 

tends to deviate from the reference of correctness (Section 3.1.2). On the other hand, 

concurrent KP has been often supplied in the form of a visual indication of motor skill 
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accuracy with regards to a threshold of correctness. For instance, Solis et al. (2003) have 

employed visual concurrent KP using red and blue colours to inform in the course of VR 

training whether the shape of the calligraphy character being traced was correct or not. 

Balijepalli & Kesavadas (2003) have presented relevant force statistics such as normal force 

being exerted, maximum applied force, average force and target force during the performance 

of grinding operations. Sewell et al. (2007) have used a bar indicator to display the force 

being exerted on a virtual membrane with regards to a target force. Esen et al. (2004, 2008b) 

have proposed concurrent KP through a force indicator which informs whether the applied 

force is appropriate, too weak or too high. Moreover, Esen et al. (2004, 2008b) have also 

reinforced visual indication of force performance with drilling sound effects specific to each 

level of force. Wang, Y. et al. (2006, 2009) have employed a unique audio feedback to notify 

inclination errors when performing an arc welding task. Audio information to provide 

concurrent KP has been less frequently used as it has been often considered inefficient as, on 

the contrary to that proposed by Esen et al. (2004, 2008b), it rarely provides prescriptive 

information that enable error correction (Wang, Y. et al., 2006).  Furthermore, according to 

Wang, Y. et al. (2006), it may result annoying when provided continuously.  

In contrast to concurrent KP, terminal KP has been more rarely employed in VR 

training. Fried, M. P. et al. (2005) have developed an assessment technique that pointed out 

errors which have occurred during the prior training session. Rhienmora et al. (2011) have 

presented a VR simulator for training technical motor skills required in dental drilling 

procedures, which provided automatic terminal prescriptive KP that suggested applying more 

or less force during the next trial.  

Concurrent KR as that type of augmented feedback which informs in real-time about 

the status of goal achievement and terminal KR that indicates goal achievement at the 

completion of the task have been both extensively employed to support motor learning 

throughout VR training. For example, Von Sternberg et al. (2007) and Luciano et al. (2012) 

have provided concurrent KR throughout VR practices of a bone drilling task in the form of 

additional viewpoints that inform about the progress of goal achievement through different 

perspectives. Johannesson et al. (2010) have emulated verbal comments that patients usually 

make during a painful intravenous catheterization task. Balijepalli & Kesavadas (2003) have 

highlighted the distribution of applied forces on a surface model during a grinding operation 

by using a colour coding which stated for the magnitude of those forces.  
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KR has been also often provided at the end of VR practices in the form of 

performance ratings which inform about goal achievement (Suebnukarn et al., 2010; Iwata et 

al., 2011, Rhienmora et al., 2011), pictorial information (Esen et al., 2004; Bhatti et al., 2009) 

and audio warning signals (Williams II et al., 2004b; Edmunds & Pai, 2008; Bhatti et al., 

2009) to notify success or failure in goal achievement.   

Although augmented feedback in the form of KP and KR has been broadly employed 

to support motor learning in VR training, the use of both types of feedback has been 

apparently more frequently associated to part-task training than whole-task training (Table 2). 

Effectively, part-task training has been commonly associated to concurrent KP in the form of 

active guidance technique (Gutiérrez et al., 2010; Lu et al., 2012) or visual notification of 

motor skill accuracy (Solis et al., 2003; Sewell et al., 2007; Esen et al., 2008b). However, 

terminal KP has been less frequently used in part-task training (Fried, M. P. et al., 2005). 

Moreover, concurrent KR (Balijepalli & Kesavadas, 2003; Von Sternberg et al., 2007; 

Luciano et al., 2012) and terminal KR (Esen et al., 2004; Williams et al., 2004b; Bhatti et al., 

2009; Iwata et al., 2011) have been also broadly employed to support motor learning in part-

task training. Nonetheless, when augmented feedback has been provided in whole-task 

training, it usually consisted of only KR (Edmunds & Pai, 2008; Suebnukarn et al., 2010; 

Johannesson et al., 2010; Rhienmora et al., 2011). Only Rhienmora et al. (2011) dared 

complementing terminal KR with terminal KP which provided prescriptive information in the 

form of recommendations for next performances.  

In this thesis, it is presented a training toolkit which allows scheduling augmented 

feedback throughout part-task and whole-task training carried out on the VR training system 

(Section 5.1). Part-task training can be enhanced with: 

1.  Concurrent KP in the form of visual indications of angle and force skill 

accuracy with regards to a reference of correctness.  

2. Concurrent KR as an indicator which displays remaining time for goal 

achievement. 

3. Visual and audio terminal KR to inform about success or failure of task 

objectives.  

Whole-task training can be enhanced with concurrent KR in the form of a colour map 

which uses a colour coding to depict task progress (Section 5.1.2.2). Moreover, terminal KR 

in the form of performance mean scores can be also provided. 
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3.4 VALIDITY OF TRANSFER 

A VR training system, to be effective, must ensure the generalization of motor skills 

previously acquired through repetitive practices to similar experiences in the real world 

(Bossard et al., 2008). This is commonly presented as transfer of learning when it refers to 

the capacity of acquiring knowledge in a source context and generalizing that knowledge to a 

different context (Leberman et al., 2006), or transfer of training when it refers to the degree 

of retention and application of knowledge and skills from a training environment to a 

workplace environment (Bossard et al., 2008). However, transfer of learning and transfer of 

training are often used synonymously (Leberman et al., 2006). Transfer or learning is usually 

associated to educational fields while transfer of training is related to working contexts 

(Bossard et al., 2008). Thus, in this thesis, transfer of motor skills to real operating 

environments will be referred as transfer of training. 

Transfer of training has been often determined by comparing task performance in the 

real world with that subsequent to VR training. Several research studies within those 

presented in Table 2, have shown that VR training enable the transfer of the trained motor 

skills to the real world. For instance, Von Sternberg et al. (2007) have shown that oral 

surgery skills trained on their VR training system could be effectively transferred to physical 

reality; Eid et al. (2007) have highlighted the effectiveness of their handwriting haptic-based 

training system to support motor learning of calligraphy characters and transfer to the 

performance in a real handwriting task; and Adams, J. R. et al. (2001) have demonstrated that 

VR training of an assembly task allows transferring motor skills to the performance of a real 

assembly task. Moreover, transfer of training can be quantified by comparing performance 

outcomes derived from real world training and VR training (Roscoe & Williges, 1980). 

Several research studies have given emphasis to transfer of training by making such 

comparison. However, none of these studies have dared quantifying the degree of transfer of 

training as suggested by Roscoe & Williges (1980). Sewell et al. (2007) have compared the 

effect of VR training on a precision drilling task commonly performed in bone surgery 

procedure with the conventional training technique usually conducted on egg shells. Their 

results suggested that VR training enables transferring the practiced force control skills to 

real world environment. However, for equivalent amount of training, task performance after 

VR training resulted lower than after conventional training. In contrast, Oren et al. (2012) 

have shown their VR training system enables transferring efficiently assembly skills to the 

performance of a real assembly task. Task performance with VR training was as good as that 
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with real world training. Thus, the VR training presented by Oren et al. (2012) suggests an 

equivalent transfer of training than conventional training. Youngblood et al. (2005) have 

demonstrated that naïve participants trained on a VR part-task trainer performed better live 

surgical tasks than those who trained with conventional training methods. In that case, a high 

degree of transfer of training is suggested.  

The issue of transfer of training with regards to the conditions that facilitate transfer 

of skills from a VR context to a real physical environment has been widely discussed (Rose et 

al., 2000; Hamblin, 2005; Bossard et al., 2008). The degree of fidelity of a VR training 

system to simulate a real target task is believed to be one of the factors which support 

effective transfer of training (Rose et al., 2000; Hamblin, 2005). Fidelity consists of the 

degree to which motor skills practised in a VR simulation accurately represents those motor 

skills in an equivalent situation in the real world (Hamblin, 2005). Transfer of training of a 

VR system has been proved high in conditions of high degree of fidelity, that is to say, in 

systems that provide realistic simulations featured by interaction paradigms that are close to 

those of the real physical task. Furthermore, high fidelity VR simulations emulate the 

consequences of those interactions in the way that they usually occur in real operating 

environments. Thus, VR simulations with a high degree of fidelity are able to simulate 

performance outcomes as in the real world. This means that those simulations enable 

discriminating between several levels of expertise. In contrast, transfer of training of a VR 

training system with a low degree of fidelity is believed to be rather weak (Rose et al., 2000).  

Many research studies, as those proposed in Table 2, have investigated the fidelity of 

their VR training systems. For example, Martins et al. (2012) have explored the realism of a 

VR training system for forklift driving based on haptic interaction by comparing the 

suggested driving paradigm with that of the real world. Similarly, Mishra et al. (2010) have 

proposed to expert surgeons to compare the performance and the realism of a surgical task in 

a VR simulator with that usually performed while training in the real world. Nishino et al. 

(2011) have validated the fidelity of a handwriting simulation through subjective comparison 

between VR and real world task performance. Steinberg et al. (2007) and Kalltröm (2010) 

have respectively investigated the fidelity of a VR training system for dentistry and surgical 

tasks by assessing subjectively the realism of the suggested simulations. Moreover, as many 

other research studies (Fried, M. P. et al., 2005; Morris et al., 2006; Aggarwal et al., 2009; 

Iwata et al., 2011; Rhienmora et al., 2011), Kalltröm (2010) have also tested the fidelity of a 

VR training system by exploring the capability of the system to simulate performance 
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outcomes corresponding to distinct levels of expertise. The study concluded that the 

simulation of performance outcomes appeared to be a realistic representation of the levels of 

expertise in the real world. 

VR training systems have been used for the development of motor programs for 

accurate performance of complex manual tasks. However, to be of any use, VR training 

systems must also enable transferring those skills to the performance of a similar task 

conducted in the real world. For this reason, transfer of training can be considered as a 

criterion for the evaluation of the effectiveness of a VR training system. In this section, it has 

been shown that a high degree of fidelity contributes to the effective transfer of motor skills 

from virtual to real operational environments. 

In this thesis, transfer of training of the suggested VR training system will be 

evaluated through two experimental studies presented in chapters 6 and 7. However, the 

evaluation of performance of fine grinding and polishing tasks in the real world is somehow 

complicated. Transfer of training will be thus discussed on the basis of the effectiveness of 

the system to train motor skills and to discriminate different levels of expertise. Moreover, 

subjective data concerning the fidelity of VR simulations will be also collected in order to 

assess the capability of the system to transfer to real operating environments.  

3.5 CONCLUSION 

This chapter has presented a literature review through which the application of 

fundamental training methods to the context of VR along with the provision of augmented 

feedback has been reviewed. First, the role of haptic force feedback to provide intrinsic and 

extrinsic information in order to support motor learning in VR has been discussed. Although 

some authors have pointed out that no clear consensus concerning the degree of realism of 

haptic force feedback to support motor learning in VR has been found, in general, the 

addition of haptics which allows simulating haptic intrinsic information similar to that in real 

operating environments, is believed to be profitable for the development of motor programs 

and thus for the learning of complex motor skills. Second, the current state of motor skill 

training in VR with regards to the application of fundamental training methods such as part-

task and whole-task training has been reviewed. On the basis of the current literature review, 

it is believed that a training program composed of part-task training inspired by progressive-

part integration of fractionized and simplified motor skills, along with whole-task training 
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would be a valuable contribution to the field of motor skill training in VR. Third, emphasis 

was given to how concurrent and terminal augmented feedback has been employed 

throughout VR training. On the basis of previous studies, a relationship between the type of 

augmented feedback and training methods has been established. Finally, the validity of VR 

training systems to transfer motor skills from virtual to real operating environments has been 

reviewed. The capability of a VR training system to support transfer of training has been 

shown to be related to the degree of fidelity of that system.  

This thesis presents a VR training system which aims to support the development of 

some of the motor skills that are relevant for the performance of fine grinding and polishing 

tasks (Chapter 4 & 5). Moreover, a training toolkit which enables building training programs 

is also proposed (Chapter 5). Training programs define the motor skill training carried out on 

the VR training system. They allow applying fundamental concepts such as training methods 

and augmented feedback to the context of VR. 

A training program based on part-task training of angle and force skills broken down 

following a decomposition scheme and whole task training will be evaluated throughout the 

two experimental studies presented in this thesis (Chapters 6 & 7). To the best of the 

knowledge of the author, the effectiveness of the proposed part-task training in VR has not 

been reported so far. The training program will also enable managing concurrent and terminal 

augmented feedback throughout VR training. Moreover, the validity of transfer of the system 

will be also discussed later in this thesis (Chapter 8).  
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Chapter 4. Context Modeling & 

Requirement Analysis 

In chapter 3, it has been shown that VR training enhanced with haptic force feedback 

which simulates realistic intrinsic information supports motor skill training for complex 

manual tasks. Among other things, VR allows part-task training of motor skills through 

practical exercises which cannot be performed the same way in the real world. Moreover, a 

fundamental advantage of VR training is the possibility to enhance motor learning with 

augmented feedback that often does not exist in conventional training.     

This chapter sets the context for the development of a VR training system which aims 

to support the learning of a subset of motor skills involved in the performance of manual 

operations commonly conducted during maintenance campaigns in industrial facilities. This 

chapter starts by presenting the metallographic replica technique, a non destructive technique 

(NDT) for the inspection of industrial facilities (Section 4.1). The metallographic replica 

technique requires previous mechanical preparation of the surface of inspected materials. 

Material surface preparation encompasses fine grinding and polishing tasks for which 

specific training is needed. The way in which that training currently occurs along with the 

issues to transfer and provide feedback on movement characteristics and performance 

outcomes are presented according to the terminology defined in chapter 2 (Section 4.2). On 



Chapter 4. Context Modeling & Requirements Analysis 

69 

 

the basis of these training issues, functional and requirement analyses have been conducted in 

order to design a VR training system which will be used to support motor learning for fine 

grinding and polishing operations (Section 4.3), and will be assessed through two 

experimental studies proposed later in thesis (Chapter 6 & 7).  

4.1 THE METALLOGRAPHIC REPLICA TECHNIQUE 

Engineering equipment in industrial plants is often subject to critical process 

conditions which result in damage to the integrity of equipment. Haribhakti (2010) have 

identified several process conditions that lead to the deterioration of the integrity of carbon 

steel and alloy steel materials. Equipment failures may strongly affect the safe and reliable 

development of manufacturing processes, and sometimes may have catastrophic 

consequences.  

In order to ensure safety and reliable manufacturing processes, industrial plants 

frequently conduct maintenance campaigns during which inspections of operating 

components are carried out. NDT for inspection of industrial facilities are crucial for the 

assessment of the material integrity and the prevention of failure (Haribhakti, 2010). NDT 

consist of techniques of in-situ evaluation of materials that composed operating components, 

and enable early detection of defects (e.g. micro-structural degradation and mechanical 

damage as cracks, voids and carbides) (Gandy & Findlan, 1996; Sposito et al., 2010). Sposito 

et al. (2010) have proposed an exhaustive review of NDT for the detection of specific damage 

mechanisms. One of the most important NDT for the inspection of material microstructure is 

the metallographic replica technique (Delle Site et al., 2006; Haribhakti, 2010; Sposito et al., 

2010). 

The metallographic replica supports material life assessment and failure analysis in 

industrial facilities (Haribhakti, 2010). It consists of a sampling procedure that records the 

topography of a material as a negative relief on a plastic foil (ASTM E 1351 – 01, 2001). 

Once the replica of the microstructure of an inspected material is obtained, it is then analyzed 

off-site using precision monitoring tools (NT NDT 010, 1991; ASTM E 1351 – 01, 2001).  

The key to obtaining an accurate evaluation of material integrity in industrial plants 

consists of two principles. First, the replica must give a representative picture of the damage 

suffered by the material (Gandy & Findlan, 1996; ASTM E 3 - 01, 2001). Therefore, the 

selection of the location where to proceed with the inspection of the material microstructure 
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is crucial (Haribhakti, 2010). Second, the inspected material surface must be prepared in 

order to remove oxide scales and impurities and reveal the microstructure of a surface free of 

deformation, scratches and other defects previously to replication of the material surface and 

microstructure analysis (ASTM E 3 - 01, 2001).  

This thesis looks at the development and the assessment of a VR training system to 

support motor learning for the performance of fine grinding and polishing tasks conducted for 

the preparation of material surface. Figure 7 shows the stages of the metallographic replica 

technique: location selection, material surface preparation, replication, replica mounting and 

microstructure analysis. 

 

Figure 7. Stages of the metallographic replica technique with emphasis on fine 

grinding and polishing operations commonly carried out for material surface 

preparation (diagram resulting from discussions with two expert metallurgist 

from Tecnatom S.A.). 

4.1.1  Location selection 

Metallographic replica must be performed preferably in locations where a material 

microstructure is submitted to critical process conditions (Gandy & Findlan, 1996; ASTM E 

3 - 01, 2001). For instance, in power plant facilities, expert metallurgists usually focus on 

operating components submitted to high temperature and pressure (Delle Sitte et al., 2006; 
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Joas, 2006) as valves (Figure 8.a), pumps, steam pipes, turbines (Figure 8.b). On all these 

components, expert metallurgists look carefully at welded seam and blades (Figure 8.b).  

 

Figure 8. (a) Interior of an industrial valve and (b) a turbine blade on which 

metallographic replica tasks are commonly carried out. 

The conditions of accessibility to these locations are often critical and therefore, 

material surface preparation tasks are often performed maintaining uncomfortable postures. 

For this reason, motor skills required in the performance of material surface preparation need 

to be trained in order to be carried out in any uncomfortable situation. 

4.1.2 Material surface preparation 

Before the replica extraction, the inspected material requires previous surface 

preparation in order to remove oxide scales and all imperfections that can alter its quality. 

Material surface preparation involves three steps: two mechanical tasks based on abrasive 

operations: grinding (Section 4.1.2.1) and polishing (Section 4.1.2.2); and a chemical 

treatment: the etching of the material surface (Section 4.1.2.3).  

The VR training system proposed in this thesis aims to supplement conventional 

training on fine grinding and polishing tasks by using haptic force feedback to simulate the 

haptic intrinsic information perceived in real operating environments. 

4.1.2.1 Grinding 

Successive grinding operations aim to remove coarse coats and scales of oxide from 

the surface of the material being inspected. Expert metallurgists usually employ a collection 

of grinders mounted with abrasive accessories with different granularity.  
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When grinding, the granularity of the abrasive paper produces scratches on the 

surface of the material. Metallurgists perform the grinding maintaining the grinder with a 

constant orientation so scratches are produced in one direction. Usually, expert metallurgists 

generate only horizontal or vertical scratches on the plane of the metallographic replica area. 

However, in order to be valid for microstructure analysis, a replica must be scratch free. 

Therefore, subsequent grinding operations must be performed alternating the grinder 

orientation by 90º and reducing progressively the granularity of the abrasive accessory (NT 

NDT 010, 1991). These operations aim to remove the effects of previous grindings by 

producing thinner scratches with perpendicular direction (Figure 9).  

 

Figure 9. Sequence of grinding operations alternating the grinder orientation by 

90º in order to remove scratches previously generated, with thinner scratches of 

perpendicular direction. 

Grinding is a long lasting process as the duration of each operation increases by three 

compared to the previous one (NT NDT 010, 1991). Moreover, the performance of grinding 

must be accurate. Higher forces exerted on a surface can overheat and deteriorate the 

microstructure of the material, whereas lower forces may be ineffective to remove scratches 

generated during the previous operation. Thus, a controlled amount of force should be 

applied (NT NDT 010, 1991).  

The ASTM standards (ASTM E 3 - 01, 2001) distinguish two stages of grinding 

operations in the mechanical preparation of a material surface: (1) rough and (2) fine 

grinding.  

Rough grinding commonly referred as planar grinding, enables removing substantial 

amount of oxide from the material surface. Expert metallurgists use an angle grinder 

equipped with abrasive flap disc of rough grits (40, 60 & 80) (Figure 10.a) and then switch to 

an angle drill mounted with abrasive flap fan of thinner grits (120, 240, 320 & 400) (Figure 

10.b).  
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Figure 10. (a) Angle grinder equipped with abrasive flap disc of rough grits and 

(b) angle drill mounted with abrasive flap fan to perform rough grinding 

operations. 

Fine grinding enables removing residual oxide scales from the material surface. 

Metallurgists usually use a precision rotary tool with right angle attachment equipped with 

abrasive flap disc of thin grits (600, 800, 1000 & 1200) (Figure 11).   

 

Figure 11. Precision rotary tool with right angle attachment equipped with 

abrasive flap disc to perform fine grinding operations. 

4.1.2.2 Polishing 

Polishing consists of smoothing down the surface of the material free of oxide scales, 

using a precision rotary tool with right angle attachment (Figure 11) equipped with a 

polishing cloth to spread uniformly a small quantity of diamond paste over the inspected area. 

Various grades of diamond paste are successively applied onto the material surface, starting 

from thicker (3 µm) to thinner (1 µm) grades (NT NDT 010, 1991).  
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Polishing is commonly referred to as mirror surfacing as the purpose of the task is to 

give a mirror-like finishing to the material surface (ASTM E 7 - 03, 2003). In other words, 

the inspected material surface must be as reflective as a mirror (Figure 12). The outcome of 

the polishing is usually checked using a torch lightening the material surface.  

 

Figure 12. Mirror-like finishing of a material surface after a polishing task. 

4.1.2.3 Etching 

Etching consists of a controlled preferential attack on the freshly polished surface for 

the purpose of revealing structural details, as its microstructure. A controlled corrosion 

process is engaged (ASTM E 7 - 03, 2003). The process involves various highly corrosive 

chemical reagents resulting from the blends of alcohols and acid chemicals specific to the 

composition of materials. Expert metallurgists apply the chemical reagents on the material 

surface with a cotton piece (Figure 13). This manipulation is considered critical as the freshly 

polished surface can result easily scratched by cotton fibers.  

 

Figure 13.The etching process 
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4.1.3 Remaining operations  

Subsequent operations in the process of metallographic replica technique are less 

relevant in the context of this thesis. They consist of replication task, replica mounting task 

and microstructure analysis. 

4.1.3.1 Replication  

Replication consists of recording the topography of the material surface as a negative 

relief on a plastic foil (NT NDT 010, 1991; Gandy & Findlan, 1996; ASTM E 1351 – 01, 

2001). A solvent composed of acetone is applied to the prepared material surface, and a 

plastic foil is delicately laid on the wet surface avoiding the air to remain between the film 

and the material (Figure 14). 

 

Figure 14. Schema of the replication process which records the topography of a 

material surface as a negative relief on a replica (Gandy & Findlan, 1996). 

The plastic foil face in contact with the metal is partially dissolved by chemical 

reaction with the solvent. After the film has dried (30 to 60 seconds), the replica is pulled off 

from the surface using a piece of adhesive tape stuck on a corner on the back side used as 

languet. The replica is then mounted on a microscope slide for further analysis. 

The replication process
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4.1.3.2 Replica mounting 

Replica mounting consists of coating the replica with a light reflecting material in a 

vacuum chamber (NT NDT 010, 1991). Expert metallurgists usually coat the replica with a 

thin layer of gold because it yields optimum contrast during the microscope observation 

(ASTM E 1351 - 01).    

4.1.3.3 Microstructure analysis 

The microstructure analysis enables searching for damage (voids, cracks, carbides and 

deformation of material grain) of the integrity of the material (Figure 15). The microstructure 

analysis is traditionally performed using a light optical microscope with a range of 

magnification from 50 to 1000X, although sometimes when more resolution is needed, a 

scanning electron microscope (from 500 to 5000X) might be used (NT NDT 010, 1991).  

 

Figure 15. A metallographic replica correctly performed analyzed with (a) the 

light optical microscope and (b) the scanning electron microscope.   

4.2 TRAINING TECHNIQUES AND ISSUES IN FINE GRINDING AND  

POLISHING 

According to Hulsholf et al. (2005), the quality of a metallographic replica strongly 

depends on the accuracy of the material surface preparation tasks for which advanced skills 

are required. In the course of rough grinding operations, high forces exerted with the grinder 

or angle drill may lead to overheating and deforming the material surface (NT NDT 010, 

1991), and low tool inclination may produce scratches with non-acceptable direction on the 

material surface. In the course of fine grinding, lower inclination of the flap disc also leads to 
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the generation of scratches with inappropriate orientation. However, for fine grinding and 

polishing operations, higher forces exerted on a material surface may hinder the rotation of 

the tool disc. Thus, for the completion of these tasks, only a little amount of force has to be 

applied in order not to damage the material. Nonetheless, a too little amount of force exerted 

on the material surface may result in an ineffective performance. Finally, in the course of 

polishing tasks, a too pronounced tool inclination may lead to a non-uniform spreading of the 

diamond paste on the material surface. Therefore, motor skill training on such tasks is 

paramount to guarantee an efficient performance of the metallographic replica technique.  

4.2.1 Current state of training 

Training on grinding and polishing operations traditionally occurs under the 

supervision of an expert metallurgist who instructs trainees on movement characteristics by 

performing practical demonstrations and providing verbal guidelines. Afterwards, trainees 

practise each task that compounds the material surface preparation stage (Figure 7).  Such 

training is considered as whole-task training (Section 2.3). In the course of the practice, the 

expert metallurgist sometimes provides concurrent Knowledge of Performance (KP) (Section 

2.4.2) in the form of verbal feedback which aims to highlight movement errors. However, 

that feedback is somehow inaccurate (Section 4.2.2.2). Finally, after the completion of the 

practiced task, the expert metallurgist provides terminal Knowledge of Results (KR) (Section 

2.4.2) to inform about performance outcomes at that stage of the material surface preparation. 

Figures 16 to 18 schematically1 represent the workflow of the activities conducted during the 

conventional training on grinding and polishing tasks along with the interactions that occur 

between the expert metallurgist and the trainee.  

 

                                                 
1 The proposed schematics consist of activity diagrams which are part of the Unified Modelling Language 

(Chonoles & Schardt, 2003). 
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Figure 16. Activity diagram which depicts the workflow of activities between the 

expert metallurgist and the trainee during the training on grinding operations. 
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Figure 17. Workflow of activities conducted during conventional training on fine 

grinding operations. Highlighted activities related to task performance and 

information feedback are supplemented by the VR training system (Section 4.3). 
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Figure 18. Workflow of activities conducted during conventional training on 

polishing operations. Highlighted activities related to task performance and 

information feedback are supplemented by the VR training system (Section 4.3). 
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The VR training system presented in this thesis initially aims to supplement 

conventional training on grinding and polishing operations through VR practice (Section 4.3). 

However, only those tasks that require the handling of power tools in which weight and 

generated forces can be simulated by a haptic device such as a Phantom Desktop device by 

Sensable Technologies (http://www.sensable.com/) will be considered. Thus, the proposed 

VR training will be limited to fine grinding and polishing operations for which a light 

precision rotary tool is used (Figure 11). 

The activities that are proposed to be supplemented through VR training consist of the 

practice of both tasks along with the action of providing information feedback during and 

after that practice in order to support motor learning (Figures 17 & 18). The proposed VR 

training aims to solve the issues that arise in conventional training (Section 4.2.2). Thus, it 

should be performed previously to conventional training. 

4.2.2 Issues of current training 

Although conventional training occurs under the supervision of an expert metallurgist, 

the transfer of motor skills from expert to trainee remains troublesome due to difficulties to 

assess performance outcomes and provide accurate instructions on movement characteristics.  

4.2.2.1 Assessment issues 

The nature of fine grinding and polishing tasks prevents the expert metallurgist and 

the trainees to monitor in real-time the result of the interaction of the tool disc with the 

surface of the material. Performance outcomes cannot be checked until the disc has been 

taken off from the surface of the material. However, the assessment of polishing is even more 

problematic.  

In the course of a polishing task, the diamond paste spread onto the inspected area 

impedes the performer to check the status of the mirror-like finishing of the material surface. 

Performance outcomes are only observable once the diamond paste has been wiped out at the 

end of the task. So, only terminal KR to inform whether task objectives have been achieved 

or not can be provided. The expert metallurgist is thus not able to provide concurrent KR to 

inform in real-time about the completion of task objectives. Nonetheless, during the 

performance of the task, advanced performers are able to evaluate the advancement of the 

polishing on the basis of the elapsed time, the exerted force and the applied angle on the 

material surface. This association between task performance and motor skill characteristics is 
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developed throughout the associative stage of motor learning (Section 2.2.2.1). Therefore, 

performers at an early learning stage, for example at the cognitive stage of motor learning 

(Section 2.2.2.1), are not able to achieve such evaluation of performance.  

4.2.2.2 Instruction accuracy issues 

Previously to practice of fine grinding and polishing tasks, the expert metallurgist 

usually provides instructions related to movement characteristics in the form of verbal 

guidelines and demonstration. Moreover, in the course of the practice, the expert also 

provides concurrent KP in the form of verbal instructions to inform about the accuracy of 

angle and force applied on the material surface, through the precision rotary tool. The 

knowledge associated with the performance of angle and force skills for fine grinding and 

polishing tasks is tacit. This means that it is difficult to explain verbally. Thus, the transfer of 

motor skills from expert metallurgists to trainees is often weak and although there are no 

objective measures of accuracy, the concurrent feedback provided throughout practice does 

not enable refining accurately the force being applied and the inclination of the tool on the 

surface of the material (Poyade et al., 2012). Effectively, on the one hand, exerted forces and 

corresponding haptic sensations are not observable and therefore difficult to evaluate. Thus, it 

is difficult for trainees to find out what force to apply on the material surface and expert 

metallurgists to provide accurate feedback on force skill. On the other hand, previous verbal 

guidelines and demonstrations usually provide a good overview of the correct inclination of 

the tool for both tasks, but do not guarantee accurate refinements in the course of the practice. 

Moreover, the concurrent feedback provided throughout the practice often tends to be 

relatively inaccurate for angle refinements. So, inaccuracy is a common problem with the 

current training method. Training with inaccurate information feedback on angle and force 

skills is critical for the development of motor programs (Section 2.2.1) and effective 

performance of fine grinding and polishing tasks.  

4.3 DESIGN OF A VR TRAINING SYSTEM  

As mentioned previously, the implementation of fine grinding and polishing task 

training in a VR system enhanced with haptic interaction and augmented feedback is believed 

to improve the learning of motor skills required for the performance of both tasks. In this 

thesis, VR training system along with a training toolkit which enables building training 
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programs to support motor learning for fine grinding and polishing tasks is proposed (Section 

5.1). This training toolkit enables (1) part-task training (Section 5.1.1) on angle and force 

skills and (2) whole-task training (Section 5.1.2) on the performance of both tasks. Moreover, 

it also allows providing concurrent and terminal augmented feedback throughout both 

training methods.   

The design of the VR training system has followed a methodology which proposes a 

functional analysis of the system, including a study of requirements, aiming to provide a 

description of what the system must do and how it must do it. The phases of functional 

analysis and requirement elicitation are part of a system engineering process (Figure 19) 

which collects and transforms customer needs and requirements in order to generate 

information specific to the design of the VR training system (DAU Press, 2001).  

 

 

Figure 19. System engineering process which defined the methodology followed 

for the design of the VR training system (adapted from DAU Press, (2001)). 

Section 4.3.1 describes the architecture of the proposed VR training system while the 

following sections focus on the requirements loop which extracts requirements for the design 

of that system. Section 4.3.2 details the steps of the functional analysis of the system, 

whereas section 4.3.3 presents the requirements that characterize the proposed VR training 

system. The resulting design is presented in chapter 5 and its effectiveness to support the 

development of motor programs for fine grinding and polishing tasks is evaluated in the 

experimental studies presented in chapters 6 and 7. 

4.3.1 General architecture of the system 

The VR training system is part of the ManuVAR platform (Krassi et al., 2010a), a 

system architecture that provides a technological and methodological framework to support 
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manual work through the product lifecycle using VR and Augmented Reality (AR) 

technologies (Appendix C). Among other things, the ManuVAR platform enables: (1) 

supporting manual work training in industrial environments through VR simulations; (2) 

orchestrates the communication flow between all the connected elements and (3) manages the 

evaluation of performance throughout VR training.  

The VR training system supports training of those motor skills that are relevant in fine 

grinding and polishing tasks. The VR training system also allows providing augmented 

feedback in the form of concurrent and terminal KR and KP throughout part-task and whole-

task training (Poyade et al, 2011) (Figure 20).   

 

Figure 20. Block diagram of the general architecture of the VR training system 

which enable part-task and whole-task training and can provide concurrent and 

terminal augmented feedback; and a representation of the interaction between all 

the actors involved in the proposed VR training.  

4.3.2 Functional analysis 

The purpose of a functional analysis is to provide a coherent description of the 

functionalities of the VR training system. In other words, the functions that the VR training 

system must carry out (Section 4.3.2.1) and how it must be done (Section 4.3.2.2). 
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4.3.2.1 System Use Cases 

The functionalities of the VR training system are depicted in the form of a use case 

diagram2 (Figure 21). Each use case provides a description of a high level functionality of the 

system (Table 3) which satisfies one or several functional requirements (Section 4.3.3).  

 

Figure 21. Use case diagram that describes the functionalities of the VR training 

system.

                                                 
2 Use case diagrams are part of the Unified Modelling Language (Chonoles & Schardt, 2003) and its extension 

for Systems Engineering, SysML (Friedenthal et al., 2008). 



 

 

 

Table 3. Description of the functionalities of the VR training system. 

Use-case 

name 
Description Pre-conditions Narration Post-conditions 

Get training This use case supports 
the proposed VR 
training. It allows the 
trainee to choose 
between two training 
methods to practice 
motor skills for the 
performance of fine 
grinding and polishing 
operations (Figure 
22).  

The trainee is logged in 
the ManuVAR platform 
and aims to train motor 
skills for the performance 
of fine grinding or 
polishing task.  

The trainee is offered through the VR training system to train 
following two training methods: (1) part-task training method that 
proposes a set of training items in which angle and force skills 
required in fine grinding and polishing operations can be practised 
separately and progressively recombined in order to practise both 
skills simultaneously; and (2) whole-task training method in which 
fine grinding and polishing tasks can be practised in a simulated 
environment as they are usually performed in real operating 
environment. 
Both training methods can provide concurrent and terminal 
augmented feedback. The part-task training method can provide 
concurrent KP and KR throughout practice in order to respectively 
inform about motor skills characteristics and item objective 
achievement rate; and terminal KR to provide a final indication 
whether training objective has been achieved or not. The whole-
task training method can provide concurrent and terminal KR in 
order to state for goal achievement during and after task practice. 
With both training methods, the trainee is immersed in a virtual 
environment which simulates the chosen task, and receives 
instructions concerning task objectives. The trainee handles a 
haptic device like a real precision rotary tool with right angle 
attachment would be hold (Figure 5). The trainee launches the 
virtual precision rotary tool to start the selected training. 

Performance 
outcomes are 
collected in an 
evaluation system 
implemented on the 
ManuVAR platform 
so that expert 
metallurgists and 
trainees can assess 
performance 
outcomes (terminal 
KR) and learning 
curves for both tasks. 

86 

M
o

to
r S

kill T
rain

ing
 u

sin
g

 V
irtu

a
l R

eality an
d

 H
a

p
t

ic In
te

ractio
n

 - A
 ca

se
 stu

d
y in in

d
u

stria
l m

a
in

te
n

a
n

ce 

 



 

 

Use-case 

name 
Description Pre-conditions Narration Post-conditions 

Simulate This use case enables 
the simulation of fine 
grinding and polishing 
tasks in a virtual 
environment 

The VR training system 
launches the virtual 
environment 

The use case starts when the system loads all the components and 
set configuration parameters in the virtual environment. 
The system simulates the haptic sensations perceived in real 
operating environment by providing haptic force feedback. 
The system simulates the task to be trained. 

 

Get Part-Task 
Training 

This use case enables 
part-task training of 
angle and force skills 
involved in fine 
grinding and polishing 
tasks (Figure 23).  

The trainees has selected 
part-task training 

The use case starts when the trainee launches the virtual precision 
rotary tool in order to proceed to part-task training. 
The trainee practises all the training items in which angle and force 
skills defined for the performance of the trained task can be 
practised separately and simultaneously. 
Concurrent KR and KP (use case: Get Real-Time Feedback) can be 
provided throughout those training items and terminal KR (use 
case: Get item Feedback) can be displayed after the completion of 
each item.  

Performance 
outcomes are 
collected in an 
evaluation system 
implemented on the 
ManuVAR platform 
so that expert 
metallurgists and 
trainees can assess 
performance 
outcomes (terminal 
KR) and learning 
curves for both tasks. 
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Use-case 

name 
Description Pre-conditions Narration Post-conditions 

Get Real-Time 
Feedback 

This use case enables 
providing to the 
trainee real-time 
information feedback 
in the form of 
concurrent KP to 
inform about accuracy 
of trained motor skills, 
and concurrent KR to 
inform about 
remaining time before 
goal achievement 
during part-task 
training.  

Concurrent KR and KP 
have been specified to 
appear throughout part-
task training (Figure 24). 

This use case starts when the trainee begins a training item which 
enables part-task practice of angle and/or force skills. 
The system provides real-time augmented feedback in the form of 
indicators that state for the values of the practiced motor skills 
(Figure 24).  
The system also provides real-time feedback in the form of a visual 
indicator that informs about the time spent on maintaining the 
practiced motor skills within the ranges of accuracy (Figure 24). 
 

 

Get item 
Feedback 

This use case enables 
providing to the 
trainee terminal KR 
which informs 
whether the objective 
has been achieved or 
failed at the end of a 
training item (Figure 
23). 

Terminal KR has been 
specified to appear after 
training item completion 
in part-task training 
(Figure 23). 

This use case starts when the trainee completes a training item in 
the process of part-task training. 
The system provides information about goal achievement in the 
form a visual indicator which states for successful or unsuccessful 
performance at the end of the training item (Figure 23). 
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Use-case 

name 
Description Pre-conditions Narration Post-conditions 

Get Whole-
Task Training 

This use case enables 
whole-task training on 
the performance of 
grinding and polishing 
tasks (Figure 25). 

The trainee has selected 
whole-task training 

The use case starts when the trainee launches the virtual precision 
rotary tool in order to proceed to whole-task training in a simulator 
application. 
Concurrent KR (use case: Get Concurrent KR) can be provided in 
the form of a colour map.  

Performance 
outcomes are 
collected in an 
evaluation system 
implemented on the 
ManuVAR platform 
so that expert 
metallurgists and 
trainees can assess 
performance 
outcomes and learning 
curves for both tasks. 

Get Concurrent 
KR 

This use case enables 
providing to the 
trainee concurrent KR 
in the form of a colour 
map to inform about 
progression of goal 
achievement in the 
course of whole-task 
training. 

Concurrent KR has been 
specified to appear 
throughout whole-task 
training (Figure 25).  

The use case starts when the trainee begins whole-task training on 
the performance of fine grinding or polishing task. 
The system provides real-time information feedback on the 
performance of fine grinding or polishing task in the form of a 
colour map which used a colour scale to inform about the status of 
the completion of the practiced task on the material surface. 

 

Get Final 
Feedback 

This use case enables 
providing to the 
trainee terminal KR to 
inform about for 
performance score. 

Performance outcomes 
from whole-task training 
are collected in an 
evaluation system 
implemented on the 
ManuVAR platform 

This use case starts when the trainee completes the whole-task 
training on the performance of fine grinding or polishing task. 
The system informs the trainee about the average task completion 
rate through the performance analyzer, an evaluation tool used by 
the ManuVAR platform for performance assessment. 
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4.3.2.2 Main system scenarios 

As mentioned previously, the VR training system aims to supplement conventional 

training on fine grinding and polishing tasks (Section 4.2.1). The conventional practice of 

both tasks is proposed to be supplemented with part-task and whole-task training in VR 

(Figure 22). The functionalities of the VR training system in terms of what activities are 

carried out during part-task and whole-task training and how a trainee interacts with the 

system are represented through several activity diagrams (Figures 23 to 25).   

In contrast to conventional training (Section 4.2.1), VR training enables several task 

rehearsals following the part-task training method which enables separately practising each of 

the motor skills that are relevant for fine grinding and polishing tasks, and whole-task 

training. Moreover throughout VR training, a much more accurate concurrent augmented 

feedback can be provided when compared to that proposed in conventional training (Section 

4.2.2). Moreover, that augmented feedback which consists of concurrent KR and KP and 

terminal KR, is based on an objective evaluation of performance.  

The VR training system aims to carry novice trainees from the cognitive stage to a 

more advanced stage of motor learning such as the associative stage (Section 2.2.2.1). Thus, 

the VR training system intends to form advanced performers for whom motor learning 

throughout conventional training will not result as problematic as for novice performers 

(Section 4.2.2).  
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Figure 22. Activity diagram which represents the stepwise actions carried out 

during VR training. The trainee must first select the training method for the 

desired task. Secondly, the trainee practices the task in VR according to the 

selected training method. Finally, the trainee and the expert metallurgist receive 

augmented feedback in the form of performance score displayed in an evaluation 

system of the ManuVAR platform (Appendix C).  
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Figure 23. Activity diagram for the part-task training method. 
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Figure 24. Activity diagram for providing concurrent augmented feedback in the 

form of KR and KP throughout part-task training. 
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Figure 25. Activity diagram for the whole-task training method.
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4.3.3 Requirement analysis 

Interviews with two expert metallurgists and the rest of the professional team from 

Tecnatom S.A. enabled the capture of a series of customer requirements that specify their 

needs and what they expected from the VR training system. Customer requirements were 

translated into a set of functional requirements which define what the system must be able to 

achieve and how it must be achieved. Table 4 details the functional requirements of the VR 

training system and Figure 26 depicts the hierarchical relationships of those requirements 

associated to the system use cases (Figure 21) that satisfied them.   

 



 

 

Table 4. Requirements of the proposed VR training system. 

Id Name Description Rationale Verification Related to  

Req. 1 Simulate grinding The system must be 
capable of simulating 
fine grinding 
operations. 

The simulation of the task is required to 
perform training on independent motor 
skills and whole-task training.  

A trainee performs the training 
task according to a 
parameterization specified by 
expert metallurgists.  

 Simulation 
(Req. 17)  

Req. 2 Simulate polishing The system must be 
capable of simulating 
polishing operations 

The simulation of the task is required to 
perform training on independent motor 
skills and  whole-task training 

A trainee performs the training 
task according to a 
parameterization specified by 
expert metallurgists  

 Simulation 
(Req. 17) 

Req. 4 Haptic feedback The system must 
provide haptic 
feedback when 
performing on a 
material surface. 

Haptic feedback is needed for an 
effective training on motor skills and 
performance of task. 

Verified when its sons are 
verified. 

Geometry 
(Req. 14) 

Req. 5 Task feedback The system must 
provide visual 
feedback of how the 
replica is being 
performed. 

 Verified when its sons are 
verified. 

 

Req. 7 Stereoscopic 
visualization 

The system must 
present the virtual 
environment on a 
stereoscopic display.  

Stereoscopic visualization is needed to 
perform the manual task as it enhances 
depth perception in the 3D environment. 

The visualization element enables 
to stereoscopically visualize the 
virtual environment in 3D.  
The stereoscopic cues can be 
activated and deactivated. 

Simulation 
(Req. 17) 
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Id Name Description Rationale Verification Related to  

Req. 8 POV tracking The system must 
present the virtual 
environment 
according to the 
position of the 
trainee's point of 
view. 

Movement parallax is needed to enhance 
the realism of the virtual environment. 

The point of view of the trainee is 
tracked and the components of 
the virtual environment are 
reported to be static when the 
trainee moves. 

 Stereoscopic 
visualization 
(Req. 7) 

Req. 11 Noise The system must be 
capable of 
reproducing ambient 
noise. 

The ambient noise would enable 
surrounding the trainee in an industrial 
facility that cannot be seen but heard. 

The system reproduces the 
provided industrial noises. 

 Environment 
(Req. 31) 

Req. 12 Light The system must be 
capable of simulating 
several ambient light 
conditions. 

Various illumination configurations can 
be setup in the system. 

Different levels of environmental 
illumination are shown and expert 
metallurgists report about the 
realism. 

 Environment 
(Req. 31) 

Req. 13 Dust The system must be 
capable of simulating 
dust in the air. 

The system should simulate various level 
of dust into the virtual environment to 
make difficult the performance of the 
task. 

Different levels of environmental 
dust are presented and expert 
metallurgists report about the 
realism. 

 Environment 
(Req. 31) 

Req. 14 Geometry The system must be 
able to process the 
geometry of the 
virtual environment 
for the simulation of 
the task. 

The system must simulate industrial 
equipments with arbitrary shape (i.e. 
complex pipe structures), place the 
metallographic replica area and simulate 
the haptic working conditions. 

Verified when its sons are 
verified. 

 Simulation 
(Req. 17) 

97

C
h

a
p

ter 4
. C

o
n

te
xt M

o
d

e
lin

g
 &

 R
e

q
u

ire
m

e
n

ts A
n

alysis
 

 



 

 

Id Name Description Rationale Verification Related to  

Req. 15 Components The system must be 
able to represent 
arbitrary geometries 
in the virtual 
environment. 

The system must simulate the industrial 
components with arbitrary shape (i.e. 
complex pipe structures). 

Different components are 
attempted to be loaded in the 
virtual environment.  

 Geometry 
(Req. 14) 

Req. 16 Inspected area The system must be 
capable of simulating 
the inspected area. 

The system must simulate the working 
area, being able to place the 
metallographic replica area on the 
component. The area must be a set of 
several sub-areas surrounded by rough 
oxide coat layer.  

Several components are loaded 
and the metallographic replica 
area and rough oxide coat layer 
must be placed onto it.  

 Geometry 
(Req. 14) 

Req. 17 Simulation The system must be 
capable of simulating 
the performance of 
fine grinding and 
polishing operations 
on specified 
components. 

The system enables performing grinding 
and polishing operations on specific 
components.  

Verified when its sons are 
verified. 

 Simulation 
(Req. 17) 

Req. 19 Blur The system must be 
capable of blurring 
the visualization due 
to condensation on 
protective glasses.  

The system must make difficult the 
performance of the task by simulating 
the condensation on the personal 
protective glasses.  

Several levels of blur are shown 
and expert metallurgists report 
about the realism. 

 Environment 
(Req. 31) 
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Id Name Description Rationale Verification Related to  

Req. 25 Final Feedback The system must 
provide the final 
outcome from the 
performance of the 
task.  

The system must inform the trainee 
about performance rate at completing the 
task (Terminal KR). Performance rate 
consists of a percentage that states for 
the average completion of the task in the 
metallographic replica area. 

The trainee completes the task 
and is informed about his/her 
performance rate through the 
performance analyzer.  

 Task 
feedback 
(Req. 5) 

Req. 26 Training program The system must 
support a training 
program.  

The system must enable using a training 
program to support the development of 
complex motor skills for the 
performance of fine grinding and 
polishing operations. 

Verified when its sons are 
verified. 

 

Req. 27 RT Feedback The system must be 
capable of providing 
Real time feedback 
on motor skill 
performance. 

The system must inform in real time the 
trainee about the correctness of the 
trained motor skills (concurrent KP & 
KR).  
 

Trainee practice angle and force 
skills through a training session. 
In item 1, only RT feedback on 
angle is shown; in item 2, only 
RT feedback on force is shown; 
in item 3, both RT feedbacks are 
shown and in item 4 no RT 
feedback is displayed. (Chapter 
6)   

 Task 
feedback 
(Req. 5) 

Req. 29 Performance 
Feedback 

The system must 
provide a real-time 
and natural feedback 
on the outcome of 
task performance.  

The system must provide a real time 
performance feedback stating for the 
advancement of the task (concurrent 
KR). The feedback is provided in the 
form of a colour map laid onto the 
metallographic replica area. Moreover, 
the colour map can be also magnified 
and displayed in a lateral window.  

Expert metallurgists perform the 
tasks and report for the realism of 
the provided feedback. 

 Task 
feedback 
(Req. 5) 
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Id Name Description Rationale Verification Related to  

Req. 31 Environment The system must be 
capable of simulating 
the configuration of 
the virtual 
environment.  

The simulation must be capable of 
simulating the environmental setup 
within the virtual environment.  

The configuration is loaded in the 
virtual environment. 

 Simulation 
(Req. 17) 

Req. 32 Skills training The system must be 
capable of supporting 
part-task training of 
motor skills.  

The system must enable training 
complex motor skills (angle and force) in 
an independent and concurrent manner 
(part-task training).  

Verified when its sons are 
verified. 

Training 
program 
(Req. 26) 

Req. 37 Tool noise The system must be 
capable of 
reproducing realistic 
sounds produced by 
the power tool 
operating. 

The system must improve the realism of 
the performance of the task by 
reproducing the sounds generated by real 
power tool when operating on the 
material surface and when rotating 
freely. 

The trainee reports about the 
changes of noises when the 
rotating wheel of the virtual 
power tool is in contact or not 
with the material surface.  

 Environment 
(Req. 31) 

Req. 38 Vibration The system must 
simulate the rotary 
vibrations of the 
power tool. 

The system must enhance the realism of 
the performance by simulating vibrations 
resulting from the functioning of the 
power tool. 

Expert metallurgists perform the 
tasks and report about the realism 
of the vibrations. 

 Haptic 
feedback 
(Req. 4) 

Req. 39 Item Feedback The System shall 
provide feedback at 
the end of each 
training item 
indicating to the 
trainee whether 
he/she has performed 
well or bad. 

The system must state for the correct or 
incorrect performance of the motor skills 
training (Terminal KR).  

Trainees perform the motor skill 
training and receive information 
concerning goal achievement 
after each training item (Green 
Tick for good performance and 
red cross for bad performance). 

 Task 
feedback 
(Req. 5) 
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Id Name Description Rationale Verification Related to  

Req. 40 Tangential force The system must 
simulate tangential 
forces as a function 
of force and angle 
applied on the 
material surface. 

The system must enhance the realism of 
task simulating the tangential forces 
resulting from the contact of the rotating 
wheel over the material surface.  

Expert metallurgists perform the 
tasks and report about the realism 
of the tangential forces.  

 Haptic 
feedback 
(Req. 4) 

Req. 41 Whole-task 
training 

The system must be 
capable of providing 
whole-task training. 

The system must provide training on the 
performance of fine grinding and 
polishing tasks as they are usually 
performed in real industrial contexts. 

Trainees perform whole-task 
training for fine grinding and 
polishing operations. Their 
performance results improved by 
this training.    

Training 
program 
(Req. 26) 

Req. 42 Angle The system must be 
capable of providing 
training on angle 
skill. 

The system must enable training angle 
skill separately. 

The trainee trains on tool 
inclination.  

Skills 
training (Req. 
32) 

Req. 43 Force The system must be 
capable of providing 
training on force 
skill.  

The system must enable training force 
skill independently  

The trainee trains on applying 
force on the material surface. 

Skills 
training (Req. 
32) 

Req. 44 Tools The system must be 
capable of simulating 
the geometry of 
power tool.  

The system must simulate the geometry 
the Proxxon rotary tool with a right angle 
attachment equipped with a tool 
consumable. 

The tool geometry can be load in 
the virtual environment and 
expert metallurgists report about 
the realism.  

Geometry 
(Req. 14) 
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Figure 26. Hierarchical representation of functional requirements associated to VR training system use cases that satisfied them.
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4.4 CONCLUSION 

This chapter has presented the modeling of a VR training system which aims to 

support the development of motor programs for effective performance of fine grinding and 

polishing tasks. First, the metallographic replica technique during which fine grinding and 

polishing tasks are conducted to prepare the surface of the inspected materials was described. 

Second, the state of the current training for fine grinding and polishing operations was 

reviewed, and several issues in that training have been highlighted. Third, a detailed 

methodology which consists of functional and requirement analyses and aims to provide 

guidelines for the development of the VR training system has been presented.  

Later in this thesis, the VR training system is presented along with a training toolkit 

that enables building training programs which allow practising those motor skills that are 

relevant for the performance of fine grinding and polishing tasks through part-task and 

whole-task training. The training toolkit also permits enhancing VR training with concurrent 

and terminal augmented feedback. The resulting design and development of the VR training 

system are presented in the chapter 5. 
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Chapter 5. Design of the Methods 

In chapter 4, functional analysis was carried out for tasks involved in the 

metallographic replica technique as well as in conventional training procedures. Then, a 

requirement analysis was presented and a VR training system for supplementing that 

conventional training has been specified. These specifications are focused in a VR training 

system which aims to support the development of angle and force skills using haptic force 

feedback through part-task and whole-task training. This system also enables the provision of 

augmented feedback in the form of concurrent and terminal Knowledge of Results (KR) and 

Knowledge of Performance (KP) (Section 2.4.2) that are usually not available in real 

operating environments. 

First, this chapter presents the resulting design of the VR training system. It proposes 

a training toolkit which enables building training programs to support the learning of angle 

and force skills through the VR training system (Section 5.1), along with the haptic 

simulation of operating conditions of the precision rotary tool employed in fine grinding and 

polishing tasks (Section 5.2). Then, the implementation of a model for the performance of 

both tasks in VR is described (Section 5.3) along with the methodology which has been 

followed to determine the values of the parameters of that model (Section 5.4).   
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5.1 TRAINING TOOLKIT 

As mentioned previously, the training toolkit allows building training programs which 

enable applying fundamental training methods such as part-task and whole-task training to 

the context of VR (Sections 5.1.1 & 5.1.2) and allows providing augmented feedback 

throughout the training process. That augmented feedback consists of KR and KP. On the one 

hand, concurrent KR and KP, and terminal KR in the form of visual and audio indication can 

be scheduled throughout part-task training (Section 5.1.1.2). On the other hand, concurrent 

KR in the form of a colour map to inform in real-time about the status of task completion and 

terminal KR as performance scores can be both provided throughout whole-task training 

(Section 5.1.2.2). Figure 27 offers an overview of the functionalities supported by the VR 

training system and proposed by the training toolkit. 

 

Figure 27. The VR training system enables carrying out the VR training 

suggested through a training program built with the training toolkit. Training 

programs encompass part-task and/or whole-task training throughout which 

augmented feedback can be provided. 

Later in this thesis, the effectiveness of the VR training system to support the 

development of motor skills that are relevant in fine grinding and polishing tasks will be 

investigated (Chapters 6 & 7). To do so, a training program based on part-task training and 

whole-task training enhanced with concurrent and terminal augmented feedback will be 

specifically designed. 
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5.1.1 Part-task training method 

Part-task training aims at the development of accurate fine motor skills such as angle 

and force skills for the performance of fine grinding and polishing tasks. Such discrete skills 

that are usually trained simultaneously in the real world, can be here broken down into 

several part-task components in order to be practised separately, and then progressively 

combined in order to build anew the whole-target task (Section 2.3.3). Moreover, concurrent 

and terminal augmented feedback can be provided in order to support motor learning.  

5.1.1.1 Part-task training design 

Part-task training proposes a set of training items through which angle and force skills 

can be practised. The sequence of those items is recommended to consider a design inspired 

by progressive-part practices of fractionized and simplified skills (Section 2.3.3). Thus, angle 

and force skills can be performed separately throughout first training items and then 

combined in order to be practised together.  

In each training item, trainees are required to exert force and angle the virtual 

precision rotary tool on the surface of the inspected material within the metallographic replica 

area displayed in the virtual environment (Figure 28). Haptic interaction within the virtual 

environment is supported by a haptic device which mimics the operating conditions of a real 

precision rotary tool (Section 5.2). Trainees are requested to maintain the trained skill(s), 

within specific ranges, continuously for a prolonged period of time. Information about ranges 

for angle and force skills and the time during which the trained skill(s) must be maintained in 

range can be displayed in the form of graphical and textual instructions from the beginning of 

the item (Figure 28). Recommendations for threshold values of these ranges are made in 

section 5.4.2.  

A right lateral panel provides support to display concurrent augmented feedback 

indicators (Figure 28). Concurrent KP and KR inform respectively about accuracy of the 

trained skill(s) and remaining time within range before the item goal is achieved (Section 

5.1.1.2). The ranges for angle and force skills can be also notified in concurrent KP 

indicators.  
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Figure 28. The part-task training interface 

Part-task training aims to support motor learning throughout several rehearsals of 

training items. However, training items may often appear too challenging at an early stage of 

learning hindering the formation of motor programs for accurate performance of angle and 

force skills (Section 2.3.1). For this reason, it is recommended that the performance of 

training items is simplified at the early learning stage. That simplification consists of 

decreasing the level of difficulty by withdrawing the motion pattern usually carried out 

during the performance of fine grinding and polishing tasks in real operating environments. 

Thus, through several training items, angle and force skills can be practised while 

maintaining the virtual precision rotary tool in a fixed position. Nonetheless, the level of 

difficulty of items is recommended to be increased in order to make part-task training more 

challenging once the trainee’s performance becomes more proficient. Therefore, angle and 

force skills are then suggested to be practised while attempting moving the virtual precision 

rotary tool across the metallographic replica area according to motion patterns usually carried 

out in real operating environments. Figure 29 details the proposed part-task training method 

with and without simplification of the motion pattern.  
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Figure 29. Part-task training method which consists of (a) a progressive-part 

practice of fractionized angle and force skills with motion pattern simplification; 

and (b) progressive-part practice of fractionized angle and force skills including 

motion pattern. 

The effectiveness of part-task training to support motor learning has been investigated 

through the experimental study presented in chapter 6. Part task training consisted of 

progressive-part practice of fractionized angle and force skills through exercises composed of 

several training items. The motion pattern was simplified at the early learning stage and then 

integrated into the training design as shown in Figure 29. 

5.1.1.2 Augmented feedback 

The VR training system allows enhancing part-task training with concurrent KP and 

KR and terminal KR (Figure 27). As mentioned previously, concurrent KP and KR state 

respectively for the accuracy of the trained skill(s) and the status of the achievement of the 

item goal. Terminal KR indicates whether the item goal has been achieved or not. These 

types of augmented feedback can be scheduled throughout part-task training. Figure 30 

presents a block diagram3 which represents the settings of augmented feedback for part-task 

training. 

                                                 
3 Block diagrams is part of the Unified Modelling Language (Chonoles & Schardt, 2003) and its extension for 

Systems Engineering, SysML (Friedenthal et al., 2008). 
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Figure 30. Configuration of augmented feedback indicators in part-task training4. 

As mentioned previously in section 5.1.1.1, concurrent KP and KR are displayed in a 

right lateral panel (Figure 28). Concurrent KP consists of (1) visual indicators which show in 

real-time the angle (Figures 31 & 32) and the force (Figures 33 & 34) being applied on the 

material surface through the haptic device and (2) a sound indicator that indicate 

instantaneously whether the trained skill(s) are within the required ranges (Figure 35). Visual 

indicators can be configured manually as a vertical bar (Figures 31 & 33) or a dial gauge 

(Figures 32 & 34) through a selection button located below the indicator.  Moreover, these 

indicators can also display the ranges which refer to the targeted angle and force skills 

(Figures 31.b, 32.b, 33.b & 34.b). The range of a skill is bounded by two grey lines on a 

vertical bar indicator (Figures 31.b & 33.b) and marked as green area on a dial gauge (Figures 

                                                 
4 SysML Glossary: 

 Generalization: defines an inheritance relationship between two block features 

   Composite aggregation: defines the property of a feature (i.e. the range of correctness is a 

property of the visual indicator of concurrent KP. The lack of indication of the range of correctness 

does not alter the functionality of the indicator). 
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32.b & 34.b). Audio KP can be activated and deactivated through a selection button located at 

the bottom of the right lateral (Figure 35). Figures 31 to 35 show the possible configuration 

of the concurrent KP presented in the right lateral panel.  

 

Figure 31. Bar indicator for angle skill with (a) no reference of correctness to 

indicate targeted angle and with (b) two grey lines to mark the boundaries of the 

range for angle skill. 

 

Figure 32. Dial indicator for angle skill with (a) no reference of correctness to 

indicate targeted angle and with (b) a green area to show the range for angle skill. 
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Figure 33. Bar indicator for force skill with (a) no reference of correctness to 

indicate targeted force and with (b) two grey lines to mark the boundaries of the 

range for force skill. 

 

Figure 34. Dial indicator for force skill with (a) no reference of correctness to 

indicate targeted force and with (b) a green area to show the range for force skill. 

 

Figure 35. Sound indicator to inform in real time whether angle and/or force skills 

are within ranges: (a) deactivated and (b) activated. 
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The effectiveness of concurrent KP indicators to support the successful development 

of angle and force skills was investigated through a user evaluation test carried out by the 

Human Factors Research Group at the University of Nottingham (Langley et al., 2011). 

Visual concurrent KP indicators were found to result in significant performance 

improvements throughout VR training. However, no significant differences between the 

suggested configurations, bar or dial, were reported. Thus, all visual indicator configurations 

can be considered similarly effective for motor learning. However, no significant training 

effects were found for audio concurrent KP.  

Throughout part-task training, information about the remaining time during which 

angle and force skills must be maintained within range is considered as Knowledge of Results 

(KR) which indicates in real-time the status of goal achievement. Thus, concurrent KR 

consists of a visual indication of the remaining time within range before the achievement of 

the item goal. That indicator is referred to as behaviour time (Figure 36) and represents a 

countdown until goal achievement. That countdown is activated when the trained skill(s) is 

placed within the desired range. As soon as the performance of the trained skill(s) becomes 

inaccurate, the countdown is reset. As with concurrent KP, concurrent KR indicator can be 

set manually as a progress bar along with a stopwatch (Figure 36.a), or a clock (Figure 36.b), 

through a selection button located below the indicator. The time displayed by the indicator 

when configured as a clock, (Figure 36.b) is relative. This means that the clock indicates the 

ratio of completion of the item goal rather than the time. A clock revolution means that the 

item goal has been achieved. The trainee has been thus able to maintain the trained skill(s) 

within the desired range for the targeted period of time. 

 

Figure 36. Indicator of the remaining time within range, in the form of (a) a 

progress bar along with a stopwatch and (b) a clock, to indicate the remaining 

time before goal achievement when the trained skill(s) are accurately performed.  
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The VR training system can also provide terminal KR after the completion of a 

training item. Terminal KR is referred as item feedback and indicates whether the item 

objective has been achieved or not. Terminal KR can be provided in the form of visual and/or 

auditory information that aim to positively or negatively reinforce the trainee’s performance. 

When the item goal has been achieved, a green tick is displayed and/or a “ding” sound is 

reproduced (Figure 37.a). In contrast, when the item goal could not be achieved, a red cross is 

shown and/or an unpleasant “buzz” sound is played (Figure 37.b).  

 

Figure 37. Visual terminal KR provided at completing a training item: (a) positive 

reinforcement and (b) negative reinforcement. 

Despite augmented feedback in the form of KP and KR is considered as a prominent 

feature of motor learning throughout VR training, it has been demonstrated that when 

provided too frequently, it tends to hamper the processing of intrinsic information feedback 

for the formation of accurate motor programs (Section 2.4.2). The suggested part-task 

training should encourage trainees to rely on intrinsic feedback. To do so, augmented 

feedback should be scheduled throughout part-task training. At an early learning stage, if no 

augmented feedback is presented, part-task training may be particularly challenging. Thus, 

augmented feedback must be provided at that stage of motor learning. However, when the 

performance of the trained skill(s) becomes more proficient, part-task training enhanced with 

augmented feedback may be not challenging enough. Thus, trainees may not be encouraged 

to rely on their intrinsic sensations. For this reason, at more advanced stages of motor 

learning, augmented feedback should be withdrawn from part-task training. Thus, augmented 

feedback is recommended to be gradually withdrawn throughout part-task training in order to 

maintain the training challenging and ensure effective motor learning throughout all learning 

stages. Table 5 presents an example of the scheduling of augmented feedback throughout 

several items of part-task training. 

 

.



 

 

 

Table 5. Schedule of the augmented feedback throughout part-task training. 

Items 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Trained Skill(s) A F A&F A F A&F A F A&F A F A&F A F A&F A F A&F 

Concurrent KP: Angle & Force 

Angle (bar/dial) XT XT XT  XT       

Angle (Sound) X X  X X       

Force (bar/dial) XT XT XT XT       

Force(Sound) X X  X X       

Concurrent KR : Remaining time within range 
Bar & Stopwatch/ 
Clock X X X X X X X X X X X X     

Terminal KR 

Visual X X X X X X X X X X X X X X X  

Sound X X X X X X X X X X X X X X X  

A   Angle 

F    Force 

A&F Angle & Force 

XT    Visual concurrent KP indicator displayed with the desired range which indicates the targeted skill 
 
X       Indicator shown with no range 

114 

M
o

to
r S

kill T
ra

in
ing

 u
sin

g
 V

irtu
al R

ea
lity an

d
 H

a
p

t
ic In

te
ractio

n
 - A

 ca
se

 stu
d

y in in
d

u
stria

l m
a

in
te

n
a

n
ce 

 



Chapter 5. Design of the Methods 

115 

 

The experimental study presented in chapter 6 investigated the effectiveness of the 

VR training system to support motor learning through part-task training. The suggested part-

task training design consisted of several rehearsals of 4 items in which trainees were required 

to maintain angle and force skills within range, continuously for 15 seconds. In items 1, 2 and 

3, angle, force, and angle and force were respectively trained and concurrent augmented 

feedback in the form of KR and KP was provided. In training item 4, angle and force skills 

were exercised simultaneously however concurrent KP indicators were withdrawn. After 

each item, terminal KR was provided in order to inform about whether the item goal has been 

achieved or not.  

5.1.2 Whole-task training method 

Whole-task training allows training on the performance of fine grinding and polishing 

tasks alike in real operating environments. Thus, whole-task training that is built upon angle 

and force skills acquired through previous part-task training (Section 5.1.1) enables applying 

the trained motor skills to the context of the performance of a whole task.  

The VR training system aims to provide a realistic representation of fine grinding and 

polishing tasks by simulating the intrinsic information in a similar way as to how it is 

perceived in the real world.  As in part-task training, a haptic device is used to interact within 

the virtual environment and mimic operating conditions of a real precision rotary tool 

(Section 5.2). Moreover, the VR training system allows supplementing intrinsic information 

with augmented feedback throughout the whole-task training. That augmented feedback 

consists of concurrent KR which is provided in the form of a colour map indicator that shows 

the performance outcome and enables visualizing task completion and therefore task progress 

over the time (Section 5.1.2.2). Finally, the VR training system can also provide terminal KR 

in the form of performance scores displayed in a module of the ManuVAR platform 

(Appendix C) in order to inform about achievement of the task objective. 

5.1.2.1 Whole-task training design 

The training toolkit enables configuring the whole-task training carried out on the VR 

training system. Several features are proposed by default. Those default features have been 

set heuristically by two expert metallurgists from Tecnatom S.A. However, these features can 
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be adjusted in order to customize the whole-task training. Figure 38 presents a block 

diagram5 which details the features that parameterize the whole-task training.  

                                                 
5 Block diagrams is part of the Unified Modelling Language (Chonoles & Schardt, 2003) and its extension for 

Systems Engineering, SysML (Friedenthal et al., 2008). 



 

 

 

 

Figure 38. Features for the configuration of whole-task training. 
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The training toolkit allows setting the performance of the trained task along with 

ambient conditions of the virtual environment. Ambient conditions are listed below.  

1.  The blur level which sets the amount of steam accumulated on the protective 

glasses worn by the performer in the virtual environment. 

2. The level of lighting of the virtual environment 

3. The noise level which specifies the amount of ambient noise in the 

surroundings of the performer. 

4. The dust level which defines the density of dust particles floating in the air.  

The degree of each ambient condition is defined in the range [0,100]. 

The configuration of task performance is defined by the parameters expressed below: 

1. The nature of the task to be trained which can be set either to fine grinding or 

to polishing. 

2. The ranges for angle and force skills (recommendations for threshold values of 

these ranges for fine grinding and polishing tasks are made in section 5.4.2). 

3. The target time to complete the whole-task training. 

4. The concurrent KR which is provided in the form of a colour map that 

indicates the progression of the trained task (Section 5.1.2.2). That colour map 

can be displayed onto the metallographic replica area and/or magnified in a 

right lateral board in the virtual environment (Figure 39). The magnified view 

of the colour map enables visualizing in real-time the outcome of angle and 

force being applied with no need for the tool disc to be taken out from the 

surface of the material. 
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Figure 39. Whole-task training configured for a polishing task (angle range [0º, 

10º], force range [1, 5N]; Target training time ≈ 3 min; Concurrent KR presented 

on the material surface and magnified on the right side).  

5.1.2.2 Colour map  

The colour map aims to inform about the status of the completion of the task being 

performed. The concept of colour map is inspired by thermal mapping which is an intuitive 

way to represent the spatial distribution of an attribute using colour coding. Thermal mapping 

has been extensively employed in the preventive and predictive inspection of industrial 

facilities (i.e. high voltage wiring and coil inspection) (Fluke Corp., 2009).  

The colour map proposed throughout the whole-task training uses by default a gradual 

colour coding from red to green to indicate about the status of the task completion across the 

metallographic replica area. Red corresponds to 0% of task completion, bright green 

represents 100% of task completion, and shades of orange and yellow are used to show 

intermediate levels of task completion (Figure 40).  

 

Figure 40. Default colour coding used in the colour map to indicate task progress 

across the metallographic replica area.  
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An alternative colour coding can be set for colour-blind people. Instead of using a 

gradual colour scale from red to green, the colour map can use a gradual colour coding of 

white for 0% of task completion, and black for 100% of task completion, with shades of grey 

for intermediate levels of task completion (Figure 41). Colour map can be switched from one 

colour coding to the other by pressing the key “G” on the keyboard. 

 

Figure 41. Alternative colour coding used in the colour map to indicate task 

progress across the metallographic replica area (adapted for colour-blind people). 

In the virtual environment in which whole-task training is carried out, the colour map 

consist of a 64 ×64 pixel texture mapped on the working area on the material surface. That 

working area is squared (W: 70 × H: 70 mm) and encompasses the metallographic replica 

area (W: 30 × H: 45 mm) in which fine grinding and polishing operations must be achieved 

(Section 4.1.2). Figure 42 shows the working area that encompasses the metallographic 

replica area in which the trained task must be performed. 

 

Figure 42. Colour map set on the material surface.   
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5.1.2.3 Modelling of task performance 

Each pixel from the colour map texture is associated to an element of the matrix ���×�����: 
���� = 	 � ��,���� ⋯ ��,�����⋮ ⋱ ⋮���,���� ⋯ ���,�����   

The colour of a pixel indicates the status of the task completion in that pixel in 

accordance with the colour coding presented in section 5.1.2.2. The colour of a pixel is 

determined by the percentage of task completion stored in the corresponding element 

of	���×�����. Those percentages values are included between 0% and 100%. 

Percentages of task completion stored in elements of	���×����� are updated when the 

corresponding pixels on the colour map texture are covered by the disc of the virtual 

precision rotary tool when operating. Depending on the exerted force and applied angle on 

the material surface, the tool disc can be completely or partially in contact with the surface of 

the material. On the one hand, when the tool disc is completely in contact with the material 

surface, the interaction is represented on the colour map as a circular area (Figure 43.a) in 

which percentages of task completion corresponding to covered pixels are updated. On the 

other hand, when the tool disc is partially in contact with the material surface, the interaction 

is represented on the colour map as a circular segment area (Figure 43.b & c) in which 

percentages of task completion corresponding to covered pixels are updated. The contact 

model of the tool disc on the material surface for fine grinding and polishing tasks has been 

captured from a performance carried out in the real world by the two expert metallurgists 

from Tecnatom S.A. The methodology followed for the definition of the model of contact of 

the tool disc on the material surface is described in section 5.4.1.  
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Figure 43. Tool disc when being pressed and inclined so it is (a) completely in 

contact with the material surface, and (b & c) partially in contact with the 

material surface.  

However, depending on the nature of the trained task, the tool disc interacts 

differently with the material surface. The interaction is thus depicted distinctly on the colour 

map texture and percentages of task completion corresponding to covered pixels are updated 

distinctly for fine grinding and polishing tasks.  

The performance of fine grinding generates scratches on the material surface (Section 

4.1.2.1).  As described previously, a fine grinding task aims for the generation of scratches in 

a unique direction on the material surface. Appropriate scratches are either horizontal or 

vertical with regards to the orientation of the metallographic replica area. Thus, two kinds of 

circular sector on the surface of the abrasive accessory that equipped the tool disc can be 

defined. In each type of sector, scratches are assumed to be generated in a unique direction.  

In the first type of sector, scratches are generated with the desired direction. These 

sectors are referred as	�! and are defined by a central angle	� which has been heuristically set 

to 80º (Figure 44). In the second type of sector, the direction of generated scratches is 

inappropriate. These sectors are referred as	�" (Figure 44). In sectors	�!, percentages of task 

completion stored in elements of	���×����� which correspond to colour map pixels being 

covered are positively updated. Thus, in accordance with the colour coding described in 

section 5.1.2.2, fine grinding is shown to be closer to the completion in those pixels. In 

contrast, in sectors	�", percentages of task completion corresponding to covered pixels are 

negatively updated. In the case those pixels have been previously correctly grinded, which 
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means covered by one of the sectors	�! defined on the surface of the abrasive accessory, the 

task completion in those pixels is shown to recede. 

 

 

Figure 44. Circular sectors �!in which scratches are generated with the 

appropriate direction, (a) vertically and (b) horizontally; and �" in which 

generated scratches are considered to be inappropriate.  

As described in section 4.1.2.2, the performance of polishing aims to spread 

uniformly diamond paste over the surface of the metallographic replica area. The interaction 

resulting from the partial or complete contact of the tool disk with the material surface is 

uniform. Thus, percentages of task completion corresponding to covered pixels are always 

positively updated. In the case of the polishing, the area of contact is referred as	�! and no 

area �" is defined. 

The model for updating percentages of task completion stored in elements 

of	���×����� for both tasks can be thus expressed as below (Eq. 1). #∀	% ∈ '1,64+∀	, ∈ '1,64+- 	⇒ #�/,0 #��� = �/,0�� − 1� + 1�n�|#	�/,0 #��� ∈ 	 '0,1+		   Eq. 1 

Where 1�5� is thus expressed as below (Eq. 2): 

1�n� = 6	 	0	 ⇔ 8#�%, ,�# ∉ 	 �!�%, ,� ∉ 	 �" #	 	:��� ⇔	 �%, ,� ∈ �!−:��� ⇔	 �%, ,� ∈ �"
#	       Eq. 2 

Where :��� corresponds to the update of the percentage of task completion between 

two graphical frames. 
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5.2 HAPTIC RENDERING 

Haptic interaction is used to simulate the haptic intrinsic feedback in a similar way to 

that perceived in real operating environments. The haptic device allows handling the haptic 

stylus as if it were a real precision rotary tool (Figures 45 & 46). In this thesis, haptic devices 

from the Sensable Technologies Phantom product line are used to support the haptic 

interaction throughout the suggested part-task and whole-task training (Section 5.1). A 

Phantom Omni (Appendix A) was used in the experimental study presented in chapter 6, 

whereas a Phantom Desktop (Appendix A) has been employed in the validation process 

described in chapter 7. Figures 45 and 46 show: 

1. The appropriate handling of the stylus of both haptic devices in the scope of 

the experimental studies conducted for fine grinding and polishing tasks.  

2. The mapping of the virtual precision rotary tool on both haptic devices with 

the accessory attachment sitting at 90º at the tip of the stylus.   

 

 

Figure 45. Handling of a Phantom Omni as proposed in chapter 6, and mapping 

of the virtual precision rotary tool on the stylus of the haptic device (The body of 

the power tool in figure b. has been added with an image editing software).  
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Figure 46. Handling of a Phantom Desktop as proposed in chapter 7, and 

mapping of the virtual precision rotary tool on the stylus of the haptic device (The 

body of the power tool in figure b. has been added with an image editing 

software).  

The haptic rendering is supported by the Sensable OpenHaptics 3.0 Haptic Device 

API (HDAPI) and High Level API (HLAPI) designed to work with punctual inter-actuators 

from haptic devices from the Sensable Technologies product line (Appendix A). The haptic 

rendering engine enables rendering custom force effects at 1 KHz rate. Thus, the haptic 

device enables simulating: 

1. The weight of a precision rotary tool. 

2. The contact with geometries (Section 5.2.1). 

3. The operating conditions of the tool such as rotary vibrations (Section 5.2.2) 

and a tangential force resulting from the contact of the rotating tool disc on the 

material surface (Section 5.2.3).  

All force models were heuristically parameterized by the two expert metallurgists 

proposed by Tecnatom S.A.  

5.2.1 Estimated applied force model 

The estimated applied force �;<<<<=  is defined as a function of the depth of penetration > 

of the punctual inter-actuator of the haptic device in the geometry and its velocity	�, 

considering the components of stiffness ? and damping @ of the material (Eq. 3). 

�;<<<<= = 	−�? ∙ > − @ ∙ �� ∙ B<<=CB<<=C        Eq.3 
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Where	�<<= is the normal vector at contact point with the geometry (Figure 47). 

 

Figure 47. Representation of the estimated applied force �;<<<<= on the material 

surface as a function of	�<<=, the normal force at contact point. 

The magnitude of the estimated applied force �;<<<<=	can be visualized in real-time 

through the force indicator proposed throughout part-task training (Section 5.1.1.2). 

However, the magnitude of the �;<<<<=	which is based on the depth of penetration of the punctual 

inter-actuator of the haptic device in the geometry (Eq. 3), may sometimes differ from the 

force exerted through the haptic device. Effectively, not all haptic devices are able to render 

forces up to a certain level. For instance, the Phantom Omni used in the experimental study 

presented in chapter 6, is only able to render forces up to 3.3N (Appendix A). Beyond this 

level of force, the virtual stiffness of the object being contacted decreases, becoming a natural 

limit for the force applied. However, according to Schmidt (1975), motor skills can be 

generalized (Section 2.2.1.2). Thus, this discrepancy is believed to be not problematic in the 

extent that the human perceptual system can fill this gap.  

5.2.2 Rotary vibrations 

Rotary vibrations consist of those vibrations generated by the rotation of the engine 

rotor of the precision rotary tool, around the axis of rotation defined by the z local axis of the 

haptic device which is described by the vector DEF<<<<<<= (Figure 48).   
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Figure 48. Local axes of the haptic device mapped on the virtual precision rotary 

tool. 

The proposed model of rotary vibrations consists of an oscillating system defined by 

the vector �G<<<<= which direction varies in time. The vector �G<<<<= is parameterized with the 

magnitude H and the angular frequency I of vibrations as in the equation below (Eq. 4): �G<<<<= = H ∙ JKL ∙ cosI5 + 
�P ∙ sinI5R       Eq. 4 K<= and 
�<<<<<= are respectively the vectors on the > and � local axes of the haptic device 

(Figure 48) and	KL 	= 	 S<=CS<=C,	
�P 	= 	 TU<<<<<<=CTU<<<<<<=C. The angular frequency I is expressed as I = 2W ∙ XG, 

and H and XG have been respectively heuristically set to 0.4	�/H  and 40	[\.  

5.2.3 Tangential forces 

The haptic device enables simulating the tangential force resulting from the contact of 

the rotating tool disc with the surface of the material. The tangential force �]<<<<= defines a 

motion which is parallel to the material surface (Figure 49) and is a function of the estimated 

applied force �;<<<<= on the material surface (Section 5.2.1).  
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Figure 49. Modeling of the tangential force �]<<<<= as a function of the estimated 

applied force �;<<<<= and therefore of the normal vector �<<= at the contact point, and the 

vector 
�<<<<<= on the � local axis of the haptic device. 

The tangential force �]<<<<= consists of the cross product of the estimated applied force �;<<<<= 
(Section 5.2.1) with the vector 
�<<<<<= (Figure 49). Therefore, the tangential force 	�]<<<<<= can be 

expressed as a function of the normal force �<<= at contact point with the material surface 

(Figure 49), the depth of penetration > of the punctual inter-actuator of the haptic device in 

the geometry and its velocity � considering the components of stiffness ? and damping	@ of 

the material (Eq. 5). 

�]<<<<= = �? ∙ > − @. �� ∙ ^ B<<=×TU<<<<<<=CB<<=×TU<<<<<<=C_	      Eq. 5 

Where	? = 0.6	 � H⁄ , @ = 0.4	 � H⁄ . a−1. 
The motion of the tool disc on the material surface and therefore that induced by the 

tangential force as described in Eq. 5, is constrained by the friction between the tool disc and 

the material surface. Friction encompasses static friction and kinematic friction. Static 

friction describes how resistive is the material surface to motion as that induced by the 

tangential force when no motion has been engaged. Dynamic friction describes how resistive 

is the material surface to motion once a motion has been engaged. Both frictions offer 

resistance to the motion of the tool disc on the material surface. The magnitude of each 

friction force can be expressed as �b such as �b = cd ∙ �, where cd is the coefficient of 

friction of the surface of the material for each type of friction. For static and kinematic 
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friction forces, their respective coefficients of friction have been heuristically set to ce = 0.2 

and	cf = 	0.1. 

5.3 INTERACTION MODEL 

Section 5.1.2.3 describes the functioning of the colour map to indicate the status of 

task completion across the metallographic replica area, and inform about task progress 

throughout the performance of the trained task. This section describes the modelling of the 

interaction between the tool disc and the material surface so that task completion can be 

represented on the colour map.   

The representation of that interaction on the colour map texture is based on the 

projection of the points that compose the tool disc in the three-dimensional space onto the bi-

dimensional UV coordinate system set in the texture image (Heckbert, 1989).  

As mentioned previously in section 5.1.2.3, the tool disc can be (1) completely or (2) 

partially in contact with the material surface. When the contact is complete, the interaction is 

represented on the colour map as a circular area, whereas when it is partial, the interaction is 

drawn as a circular segment area. In both cases, the representation of contact is a function of 

the radius F	of the tool disc. However, in order to enable the mapping of such interaction on 

the colour map, the radius F must be normalized to range in [0,1]. The normalized length Fgh 

is calculated as Fgh = F Wj 	where W is the side size of the square working area (Figure 42).  

The normalized length	Fgh is later used to determine the conditions that colour map 

pixels must satisfy in order to be considered as covered when the tool disc is in complete 

(Section 5.3.1) or in partial (Section 5.3.2) contact with the material surface.  

5.3.1 Complete contact model 

The projection of the centre of the tool disc in the three-dimensional space, into the 

UV coordinate system set in the colour map texture is referred as	kgh and is expressed in UV 

coordinates as	��l, �m�.  
Each pixel of the colour map texture is assigned a unique UV coordinate. From now 

on, pixels of the colour map will be identified as their corresponding elements in	���×�����. 
Thus, pixels referred as	�/,0, with	% ∈	[1,64] and	, ∈	[1,64], are assigned UV coordinates 



Motor Skill Training using Virtual Reality and Haptic Interaction - A case study in industrial maintenance 

130 

 

expressed as	��n/,0, �n/,0�. Thus, pixels covered by the tool disc completely in contact with 

the material surface satisfy the condition presented below (Eq. 6). 

#∀	% ∈ '1,64+∀	, ∈ '1,64+- ⇒ o�#np,q # − �lrs + o�#np,q # − �mrs ≤	Fghs    Eq. 6 

5.3.2 Partial contact model  

Partial contact of the tool disc on the material surface is drawn as a circular segment 

area on the colour map. That circular segment area is centered in	kgh, and is enclosed 

between a circular arc which is centered in the edge point	
ghu , and the secant line	�v� that 

intersects perpendicularly with the diameter line of the projection of the tool disc shape in the 

point [gh (Figure 50). The slope of the secant line	�v� is determined by applying the rotation 

matrix K wcos xs −sin xssin xs cos xs y to the vector	kgh	
ghu<<<<<<<<<<<<<<<=. 

 

Figure 50. Representation of partial contact of the tool disc with the material 

surface on the colour map.  

The edge point 	
ghu  on the colour map is the bi-dimensional representation of the 

point 
 which is the point of the tool disc in the three-dimensional space that deeper 

penetrates into the material (Figure 51).  
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Figure 51. Determination of the point 
 on the tool disc. 

The point 
 can be obtained from the vector k
<<<<<= such as k
<<<<<= 	= F ∙ Dz with the 

normalized vector	Dz = 	 # {|<<<<<=×B<<=C{|<<<<<=×B<<=C #.        

  

The normal projection of 
 on the colour map is the point 
gh that allows forming the 

vector kgh
gh<<<<<<<<<<<<<<= which magnitude varies as a function of the inclination } of the virtual 

precision rotary tool with regards to �<<= at contact point (Figure 52).  

 

Figure 52. Normal projection of the point 
 on the colour map as 
gh and 

representation of the point 
 on the colour map as the edge point	
ghu . 

D<<= 


 

k 
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The edge point 	
ghu  as the representation of the point 
 on the colour map can be 

expressed as below: 

 kgh
ghu<<<<<<<<<<<<<<= = Fgh ×	 	~�����<<<<<<<<<<<<<<<<<=C	~�����<<<<<<<<<<<<<<<<<=	C 
Where Fgh is the normalized length of the radius of the tool disc on the colour map.  

The intersection point [gh (Figure 50) is a function of the degree of contact of the 

tool disc on the material surface. The vector [gh	
ghu<<<<<<<<<<<<<<<= determines the height of the circular 

segment area in contact with the material surface (Figure 50). The model of contact of the 

tool disc on the material surface is defined as a function of the exerted force and applied 

angle on the precision rotary tool. It has been determined heuristically by the two expert 

metallurgists from Tecnatom S.A. and it is expressed as the ratio	� of the diameter of the tool 

disc in contact with the surface material (Section 5.4.1). Thus, the vector  [gh	
ghu<<<<<<<<<<<<<<<= can be 

expressed as: 

 [gh
gh<<<<<<<<<<<<<<= = 2 ∙ � ∙ Fgh ∙ 	 ~������<<<<<<<<<<<<<<<<=�~������<<<<<<<<<<<<<<<<=� 

Hence, when the contact is partial, percentages of task completion are updated for 

those pixels which satisfy the condition presented in Eq. 6 (Section 5.3.1) and one of the 

conditions described in the following cases (Figures 53 to 55).  
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Figure 53. Case 1: representation of the circular segment area on the colour map. 

Percentages of task completion corresponding to pixels enclosed in that circular 

segment area are updated.  
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Figure 54. Case 2: representation of the circular segment area on the colour map. 

Percentages of task completion corresponding to pixels enclosed in that circular 

segment area are updated. 
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Figure 55. Case 3: representation of the circular segment area on the colour map. 

Percentages of task completion corresponding to pixels enclosed in that circular 

segment area are updated. 

Those cases (Figures 53 to 55) can be expressed as a function of the UV coordinates 

of pixels ��n/,0 , �n/,0�/∈'�,��+,0∈'�,��+ with regards to the affine equation of the secant line	�v� 
which is defined by the slope � and the y-intercept 1 of the secant line �v� in the UV 

coordinates system. Those cases are presented below (Eq. 7 to 9). 
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Case 1 (Figure 53): 

#∀	% ∈ '1,64+∀	, ∈ '1,64+- ⇒ 	~������<<<<<<<<<<<<<<<<<=∙h<=�	~������<<<<<<<<<<<<<<<<<=�∙‖h<=‖ > 0	 ∧ 	
���
�� %X 	~������<<<<<<<<<<<<<<<<<=∙g<<=�	~������<<<<<<<<<<<<<<<<<=�∙‖g<<=‖ = 0		 ⇒ 	�#np,q # ≥ 1
%X 	~������<<<<<<<<<<<<<<<<<=∙g<<=�	~������<<<<<<<<<<<<<<<<<=�∙‖g<<=‖ ≠ 0		 ⇒ �#np,q # ≥ � ⋅ 	� #np,q # + 1				#		Eq. 7 

Case 2 (Figure 54): 

#∀	% ∈ '1,64+∀	, ∈ '1,64+- ⇒ 	~������<<<<<<<<<<<<<<<<<=∙h<=�	~������<<<<<<<<<<<<<<<<<=�∙‖h<=‖ < 0	 ∧ 		
���
�� %X 	~������<<<<<<<<<<<<<<<<<=∙g<<=�	~������<<<<<<<<<<<<<<<<<=�∙‖g<<=‖ = 0		 ⇒ 	�#np,q # ≤ 1
%X 	~������<<<<<<<<<<<<<<<<<=∙g<<=�	~������<<<<<<<<<<<<<<<<<=�∙‖g<<=‖ ≠ 0		 ⇒ �#np,q # ≤ � ⋅ 	� #np,q # + 1				#		Eq. 8 

Case 3 (Figure 55): 

#∀	% ∈ '1,64+∀	, ∈ '1,64+- ⇒ 	~������<<<<<<<<<<<<<<<<<=∙h<=�	~������<<<<<<<<<<<<<<<<<=�∙‖h<=‖ = 0	 ∧
���
�� %X	 	~������<<<<<<<<<<<<<<<<<=∙g<<=�	~������<<<<<<<<<<<<<<<<<=�∙‖g<<=‖ = 1 ⇒ � #np,q # ≥ n�∈'l,�+
%X	 	~������<<<<<<<<<<<<<<<<<=∙g<<=�	~������<<<<<<<<<<<<<<<<<=�∙‖g<<=‖ = −1 ⇒ � #np,q # ≤ n�∈'l,�+

#	          Eq. 9 

5.3.3 Representation of the interaction of the abrasive accessory  

As mentioned previously in section 5.1.2.3, depending on the nature of the task, the 

abrasive accessory that equipped the tool disc interacts differently with the material surface.  

The performance objective of fine grinding is to generate scratches in a unique 

direction on the material surface: horizontal or vertical direction with regards to the 

orientation of the metallographic replica area. Two kinds of circular sector on the surface of 

the abrasive accessory disc have been defined (Figure 44). Sectors �! generate scratches with 

the desired direction whereas sectors �" generate inappropriate scratches. Thus, as detailed in 

Eq. 2, percentages of task completion stored in elements of 	���×����� corresponding to 

colour map pixels covered by the tool disc are updated differently whether pixels are 

enclosed in sectors	�! or �". The orientation of those sectors varies as a function of the 

desired direction of generated scratches (Figure 56). 
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Figure 56. Circular sector areas 	�! in which scratches are generated in the 

desired direction: (a) vertical and (b) horizontal. Sectors �! are defined by a 

central angle	� which has been heuristically set to	80º (Section 5.1.2.3). 

The type of sector in which covered pixels, expressed as	�/,0 with	% ∈	[1,64] and	, ∈	[1,64], are located, can be expressed as a function of the angle � formed by the vector	kgh��,�<<<<<<<<<<<<<= 
and the horizontal vector	�<= of the UV coordinate system such as: #∀	% ∈ '1,64+∀	, ∈ '1,64+- ⇒ �	 = 	 cos"� 	~��n�,�<<<<<<<<<<<<<<<=.g<<=		C	~��n�,�<<<<<<<<<<<<<<<=C.‖g<<=‖        

Thus, the condition for covered pixels 	�/,0 to be located in a sector �!  can be thus 

expressed as below:  

	#∀	% ∈ '1,64+∀	, ∈ '1,64+- ⇒ �/,0 ∈ �! ⟺	 |cos �| ≥ cos o�sr 	∨ 	 |sin �| ≥ sin oxs −
�
sr	     

Otherwise, those covered pixels are located in	�". 

As mentioned in section 5.1.2.3, In the course of a polishing task, the interaction 

between the surface of the tool disc in contact with the material surface is uniform. All colour 

map pixels being covered by the abrasive accessory are assumed to be located in an area with 

similar properties as sectors	�! defined for fine grinding task. Thus, percentage of task 

completion corresponding to covered pixels which satisfy the condition presented in Eq. 6 

(Section 5.3.1) and one of the conditions presented in Eq. 7 to 9 (Section 5.3.2) are positively 

updated following the model presented in Eq. 1 and 2 (Section 5.1.2.3).  
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5.4 ESTIMATION OF THE VALUE OF PARAMETERS 

The development of the VR training system as proposed in this thesis in order to train 

angle and force skills through part-task training (Section 5.1.1) and practise the performance 

of fine grinding and polishing tasks through whole-task training (Section 5.1.2) has required 

the heuristic determination of a series of parameters. The resulting values enable the 

definition of the model of contact of the tool disc on the material surface (Section 5.4.1) and 

the ranges for angle and force skills for the suggested tasks (Section 5.4.2). The 

determination of these values aims to enable realistic simulations of both tasks in VR. The 

two expert metallurgists from Tecnatom S.A. have been involved in the procurement of these 

values. 

5.4.1 Definition of the model of contact of the tool disc  

This section aims to define the model of contact of the tool disc on a material surface 

for both fine grinding and polishing tasks. The obtaining of such model of contact has 

followed a heuristic method which resulted in the determination of the ratio � of the diameter 

of the tool disc in contact with the material surface. As mentioned previously in section 5.3.2, 

that ratio is a function of the force exerted and the inclination of the precision rotary tool on 

the material surface and is expressed in the form of a percentage.   

The two expert metallurgists have captured the tool disk in contact with a material 

surface while attempting several tool inclinations and forces. Those exerted forces were 

assumed to be close to those defined later for the range for force skill for both tasks (Section 

5.4.2.1). Resulting captures are presented through a series of images shown in Table 6.  

The ratio � has been measured directly on the images of captures. Resulting 

measurements which enable the definition of the contact model of the tool disk on the 

material surface are shown in Table 7. Figure 57 offers a graphical representation of the 

contact model. 
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Table 6. Heuristic method for the determination of the contact model of the tool 

disc on a material surface considering several forces and tool inclinations. 

 Minimum Force Maximum Force 

Angle: 0 º 

  

Angle: ≈ 5 º 

  

Angle: ≈ 10 º 

  

Angle: ≈ 15 º 

  

Angle: ≈ 30 º 
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 Minimum Force Maximum Force 

Angle: ≈ 45 º 

  

Angle: ≈ 60 º 

  

 

Table 7. Definition of the contact model in the form of a percentage which states 

for the ratio � of the diameter of the tool disc in contact with the material surface. 

 Force Min. Force Max. 

Angle: ≈ 0º � = 100 % � = 100 % 

Angle: ≈ 5º � ≈ 25%  � ≈ 65 % 

Angle: ≈ 10º � ≈ 19 % � ≈ 63 % 

Angle: ≈ 15º � ≈ 15 % � ≈ 33 % 

Angle: ≈ 30º � ≈ 9 % � ≈ 27 % 

Angle: ≈ 45º � ≈ 7 % � ≈ 22 % 

Angle: ≈ 60º � ≈ 4 % � ≈ 15 % 

Angle: ≥ 90º � = 0% � = 0 % 
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Figure 57. Graphical representation of the contact model. 

 

5.4.2 Definition of ranges for force and angle skills  

A trial session which involved the two expert metallurgists from Tecnatom S.A. was 

carried out at the University of Malaga in order to collect force and angle data related to the 

performance of fine grinding and polishing tasks. The purpose of this trial session was to 

determine heuristically the threshold values that bound the ranges for force and angle skills 

considered for the training of both tasks.  

Expert metallurgists were standing at about one meter in front of a wide screen (W: 

2400 x H: 1800 mm) on which was monoscopically displayed a 3D virtual environment. That 

virtual environment simulated an industrial pump component located in an industrial plant 

and a virtual precision rotary tool with right angle attachment controlled in position and 

orientation by a haptic device (Figure 58).  
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Figure 58. Virtual environment in which the trial session occurred. 

Throughout the trial session, expert metallurgists were required to manipulate the 

virtual precision rotary tool on the surface of a gasket inclined of 45º on the horizontal axis, 

mounted on the frontal face of the pump component (Figure 58). A Phantom Desktop haptic 

device from Sensable Technologies was used for the collection of force and angle data. The 

haptic device model employed in the trial session was similar to the one owned by Tecnatom 

S.A and used in the experimental study presented in chapter 7. The haptic device was able to 

render up to 7.9 N onto 3 Degrees of Freedom (DOF) (Appendix A). Expert metallurgists 

were required to handle the haptic device as if it were a real precision rotary tool (Figure 46). 

The haptic device mimicked the operating conditions of a real precision rotary tool by 

simulating the weight of the tool which has been set heuristically and validated by expert 

metallurgists, rotary vibrations (Section 5.2.2) and tangential forces caused by the rotation of 

the tool disc on the material surface (Section 5.2.3). 

5.4.2.1 Force for fine grinding and polishing tasks 

Expert metallurgists were required to exert the (1) minimum, (2) maximum and (3) 

optimum forces they could apply during the performance of fine grinding and polishing tasks 

in real operating environments. Forces were exerted perpendicularly to the gasket surface.   

Force measurements were performed at 100 Hz rate and data were collected once the 

virtual precision rotary tool was launched. Measures were averaged aiming to determine 
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overall threshold values for the minimum and maximum boundaries of the range of force for 

both tasks (Table 8). 

Table 8. Average exerted forces with a Phantom Desktop haptic device 

 Minimum Force Maximum Force Optimum Force 

Force Value  ��/� ≥ 1	� 5	� ≤ ��nd 	≤ 6	� �mU� ≅ 3	� 

 

In each trial, the two expert metallurgists applied relatively similar amount of forces. 

The values of the boundaries suggested for the range for force skill consists of 

recommendations made on the basis of the heuristic determination from the part of both 

experts. Chapters 6 and 7 present two experimental studies for which the range has been 

respectively set to [1N, 5.3N] and [1N, 5N]. 

5.4.2.2 Angle for Fine grinding task 

As explained previously in section 4.1.2.1, the fine grinding task aims to the 

generation of scratches in a unique direction on the material surface. Two types of circular 

sectors on the surface of the abrasive accessory have been defined (Section 5.1.2.3). In 

sectors	�!, scratches are generated in the desired direction, vertical or horizontal depending 

on the requirement of the task. In contrast, in sectors	�", generated scratches are 

inappropriate.  

The determination of the range for angle skill for a fine grinding task consists of 

defining the optimum contact area so that all scratches are generated only with the desired 

direction. That contact area consists of a circular segment area 	�mU� as a cut-off of a sector  

�! defined by its height ℎ (Figure 59). The height ℎ enables defining the optimum ratio �mU� 
of the diameter of the tool disc in contact with the material surface. That ratio �mU� can be 

expressed such as �mU� 	= ℎ (2 ∙ F)j  with ℎ	 = F o1 − cos �sr and the radius	F of tool disk. 
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Figure 59. Definition of the optimum contact area so that all scratches are 

generated with the desired direction: (a) vertical and (b) horizontal with regards to 

the orientation of the metallographic replica area. 

To the extent that the central angle �	of sectors	�! has been set heuristically to �	= 80º 

(Section 5.1.2.3), and the radius r of the tool disk has been measured as F	= 13.5 mm, the 

optimum ratio is calculated to be �mU�	≈ 0.117. This means that the height of the circular 

segment area 	�mU� corresponds to 11.7% of the diameter of the tool disc. 

By reporting that value on the contact model presented in section 5.4.1, the range for 

angle skill for fine grinding task is bounded in [≥25º, 90º] when the exerted force approaches 

the lower limit of the range of force (Section 5.4.2.1), and in [≥65º, 90º] when the exerted 

force is within the threshold that define the upper limit of the range of force (Section 5.4.2.1).  

Chapter 7 presents an experimental study which proposes among others, part-task and 

whole-task training of angle skill for a fine grinding task. The range for angle skill has been 

set to [75º, 90º]. 

5.4.2.3 Angle for polishing task 

Considering the nature of the interaction of the tool disc on a material surface during 

polishing operations (Section 5.1.2.3), the inclination of the precision rotary tool is not really 

relevant for the quality of the polishing. However, the two expert metallurgists from 

Tecnatom S.A. were required to determine heuristically the boundaries of the ranges in which 

the performance of angle skill during a polishing task is considered to be efficient along with 
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an optimal tool inclination for a comfortable task performance. Those threshold values were 

determined from angle data collected at 100 Hz rate once the virtual precision rotary tool was 

launched and operating on the inclined gasket of the pump component. Table 9 presents the 

average values of the recommended thresholds of the angle skill for a polishing task.  

Table 9. Average applied angle on the surface of the inclined gasket. 

 Minimum Angle Maximum Angle Comfortable Angle 

Angle value ≅ 0º ≅ 15º ≅ 5º 
 

On the basis of these results, part-task and whole-task training for polishing tasks are 

recommended to be configured with a range for angle skill bounded from 0º to up to 15º. 

However, training with angle boundaries which overpass the maximum recommended value 

is not critical for the performance of the task.  

In the experimental studies presented in chapters 6 and 7, the range for angle skill for 

a polishing task has been respectively set to [0º, 10º] and [0º, 20º]. 

5.5 CONCLUSION 

In this chapter, the resulting development of the VR training system inherent to 

functional and requirement analyses carried out in chapter 4 has been presented. A training 

toolkit which enables building training programs based on fundamental training methods 

such as part-task and whole-task training carried out on the VR training system has been 

proposed. Moreover, part-task and whole-task training can be enhanced with augmented 

feedback in the form of concurrent and terminal KP and KR. Several configurations for 

augmented feedback indicators are presented.  

The suggested VR training occurs in realistic virtual environments which simulate 

haptic intrinsic information like that perceived during the performance of fine grinding and 

polishing tasks in real operating environments. 

Furthermore, this chapter has emphasized on the provision of concurrent KR during 

whole-task training through a colour map indicator. Such augmented feedback aims to inform 

in real-time about the status of task completion and therefore task progress over the time. The 

implementation of the representation of task performance through the colour map has been 
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presented along with the methodology followed for the determination of the parameters that 

are relevant for that development.  

The following chapters propose two experimental studies which among other things, 

aim to assess the effectiveness of the VR training system to support motor learning of angle 

and force skills for  fine grinding and polishing tasks.   
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PART 4 

EVALUATION  

FRAMEWORK
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Chapter 6. Experimental study 1 

6.1 INTRODUCTION 

As it was described in chapter 4, the metallographic replica is an in-situ non-

destructive inspection technique which enables recording the microstructure of a material 

surface as a negative relief on a plastic foil (ASTM E 1351 – 01, 2001). The metallographic 

replica technique requires previous material surface preparation that encompasses among 

other things, several polishing operations for which specific tool inclination and force need to 

be accurately applied (ASTM E 3 - 01, 2001). Thus, training those motor skills is paramount 

to guarantee an efficient performance of the task.   

It has been also mentioned in chapter 4 that conventional training usually occurs 

under the supervision of an expert metallurgist who assists the trainee’s performance by 

providing concurrent Knowledge of Performance (KP) (Section 2.4.2) in the form of verbal 

guidelines. However, that verbal concurrent KP is often insufficient to support the transfer of 

tacit knowledge such as angle and force skills from the expert to the trainee. Moreover, the 

nature of the polishing task impedes the expert metallurgist and the trainee to monitor in real-

time the performance outcome on the material surface. The expert metallurgist can only 
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provide terminal Knowledge of Results (KR) (Section 2.4.2) on the basis of final 

performance outcomes.  

This chapter presents an experimental study which investigates the effectiveness of 

the VR training system presented in chapters 4 and 5, to support the training of angle and 

force skills for a polishing task. The proposed training is enhanced with concurrent and 

terminal augmented feedback provided through a set of visual and audio indicators.  

 

The experimental study presented in this chapter has been submitted as a journal 

paper in the following publication: 

Poyade, M., Molina-Tanco, L., Reyes-Lecuona, A., Langley, A., D’Cruz, M., 

Sharples, S. (2013). Experimental evaluation of haptic-based part-task training for 

motor skill learning in industrial maintenance operations. IEEE Transaction on 

Haptics (Pending on acceptance). 

6.1.1 Development of motor skills 

In general, the development of motor skills to efficiently perform a polishing task as 

required in the metallographic replica technique is a long process during which trainees 

practice to progressively gain in efficacy. Fitts & Posner (1968) proposed that the 

development of motor skills occurs through a hierarchical model composed of three stages: 

cognitive, associative, and autonomous (Section 2.2.2.1). At the early stage of learning, 

motor skills are awkward and usually require a considerable amount of cognitive load, but 

progressively gain in proficiency and gradually merge into the next stage until motor skills 

become automatized.   

In many occasions, motor skills are too complex, and practising only the whole-task 

may be ineffective for training purposes (Schmidt & Wrisberg, 2008). Thus, part-task 

training which consists of breaking down motor skills into simple part-task components 

appears as an alternative to the training of complex motor skills through whole-task practice 

(Teague et al., 1994; Utley & Astill, 2008; Browne et al., 2009; Coker, 2009).  
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As presented in chapter 2, Wightman & Lintern (1985) (reported in Roessingh et al., 

2002) have defined three techniques to break down motor skills into part-task components:  

1. The segmentation which consists in separating serial skills into parts according 

to spatial or temporal considerations. 

2. The fractionation which consists in separating skills that are usually executed 

simultaneously during the task. 

3. The simplification which consists in acting on some characteristics of the task 

to decrease the level of difficulty and therefore ease the performance.  

Part-task training of motor skills that are performed simultaneously during a polishing 

task is difficult to achieve through conventional training. Nonetheless, it is believed that VR 

training supports the fractionation of and the progressive integration of those motor skills in 

order to be practised separately and concurrently.  

6.1.2 VR and haptic training 

As it has been already discussed in chapter 3, haptic and VR technologies have been 

successfully employed for training motor coordination and force skills (Esen et al., 2004; 

Tholey et al. 2005; Morris et al., 2007; Wagner et al., 2007; Esen et al., 2008a; Martin et al., 

2012; Zhou et al. , 2012). The importance of haptic force feedback for training motor skills 

involved in healthcare activities has been demonstrated (Morris et al., 2006; Steinberg et al., 

2007; Sternberg et al., 2007; Suebnukarn et al., 2010; for review see Coles et al., 2011; 

Rhienmora et al., 2011). Moreover, VR training systems enhanced with haptic force feedback 

have also been employed to support the training of technical motor skills involved in 

industrial procedures (Balijepalli & Kesavadas, 2003; Wang, Y. et al., 2006; Abate et al., 

2009; He & Chen, 2006; Wang, Y. et al., 2009; Sung et al., 2011). However, the validity of 

those VR training systems has been investigated so far. 

VR allows enhancing the training experience with augmented information feedback 

that is often not available in real world contexts (Todorov et al., 1997; Esen et al., 2004; 

Gopher, 2012). Moreover, fundamental training methods such as part-task and whole-task 

training have been successfully applied to the context of VR training (Aggarwal et al., 2006; 

Eid et al., 2007;  Sternberg et al., 2007; Aggarwal et al., 2009; Suebnukarn et al., 2010; Iwata 

et al., 2011, Rhienmora et al., 2011; Luciano et al., 2012; Oren et al., 2012), offering the 

possibility of repetitive and safe tasking in realistic virtual environments (Bossard et al., 
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2008; Johanesson et al., 2010; Mishra et al., 2010; Pan et al., 2011; Bhatti et al., 2012). 

However, to the best of the knowledge of the author, the effectiveness of part-task training 

inspired by the fractionation of simultaneous motor skills applied to VR training has not been 

reported so far. Thus, an experimental study investigating the effectiveness of such VR 

training would be a valuable contribution to the field of motor skill training in VR.  

6.1.3 Hypothesis and rationale 

This experimental study aims to assess the effectiveness of the VR training system 

presented in chapter 5, which enables part-task training to support the successful 

development of angle and force skills for the performance of a polishing task. Part-task 

training is inspired by the progressive integration of fractionized and simplified motor skills 

into a whole-target task (Section 2.3). So far, the effectiveness of this type of VR training 

method has not been evaluated.  

In this thesis, it is believed that a VR training system able to provide such training 

would enable supplementing the conventional training on polishing tasks to the extent that: 

1. Such VR training would allow the trainee to progress towards a more 

advanced stage of motor learning than previously possible using conventional 

training. 

2. More accurate information on performance and results in the form of visual 

concurrent KP and KR can be provided in order to improve the transfer of tacit 

knowledge to the trainee.  

In order to evaluate the effectiveness of the VR training system to support the training 

of  angle and force skills required in a polishing task, two hypotheses have been formulated: 

1. Part-task training is effective in improving trainees’ proficiency in angling the 

virtual precision rotary tool and exerting the correct force on the material 

surface.  

2. Part-task training allows to efficiently transfer trained motor skills to the 

performance of whole-target task such as a polishing task simulated in a 

virtual environment.  
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6.2 METHODS 

6.2.1 Participants 

Thirty students and members of staff from the University of Nottingham, 14 males 

and 16 females aged from 18 to 65 (M =30.21, SD = 2.85 years), were recruited for this 

study. The participants had no previous experience manipulating haptic devices and power 

tools. All participants but one were right handed, and did not report any arm or wrist 

disability and uncorrected visual impairments.  

Participants were asked to fill a prior consent form in which they were informed about 

the purpose of the study, their rights as participants and publication policies (Appendix D). 

Participation was voluntary and rewarded with a £10 voucher ticket per hour. 

6.2.2 Apparatus 

The experimental setup consisted of the VR training system supported by the 

ManuVAR platform (Krassi et al., 2010a) which has a flexible architecture that allows 

running the components of the training system on several networked computers to enhance 

performance (Appendix C). For this experiment, the system was distributed across 3 

workstations with identical technical characteristics (Intel Core Duo CPU 3GHz with 3.18G 

RAM). PC 1 ran a haptic server designed for the ManuVAR platform to support the haptic 

rendering of geometries and force effects at a rate of 1 KHz using the Sensable OpenHaptics 

Haptic Device API (HDAPI) and High Level API (HLAPI). A PHANToM Omni by Sensable 

Technologies (http://www.sensable.com), a punctual inter-actuator able to sense position and 

orientation on 6 DOF input and render forces up to 3.3 N onto 3 DOF output within a 

delimited workspace (up to 160 W x 120 H x 70 D mm), was used as haptic interface 

(Appendix A). In order to prevent the haptic interface from warming up when it was used for 

a prolonged period of time, the haptic device was swapped with a similar one at the 

beginning of the experiment for each participant. PC 2 displayed a virtual environment on a 

2D Panasonic LCD monitor (W: 850 x H: 450 mm) with a 1920 x 1080 pixels screen 

resolution. The virtual environment was rendered by the 3DVia Virtools 5.0 VR Player at a 

60 Hz refresh rate. PC 3 ran support tasks such as managing user profile, launching 

applications, loading lesson definition files and orchestrating communication among all 
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components (Poyade et al., 2011). In addition, a laptop was used to display instructions to 

participants.  

Participants sat at about one meter in front of the 2D LCD monitor with their line of 

sight targeting to the centre of the screen. They were facing the haptic device placed in the 

centre of LCD monitor width (Figure 60).  

 

Figure 60. The haptic device was located in front of the monitor and instructions 

were displayed on a laptop placed on the left of the participant. 

Participants interacted in the virtual environment using a virtual precision rotary tool 

simulated by the haptic device. Participants were shown how the virtual tool was mapped on 

the haptic device and were asked to handle it as if it were a real portable power tool (Figure 

61). The haptic device simulated the weight of the tool, the force resulting from the contact 

with surfaces, and the operating conditions of a precision rotary tool (Section 5.2). 
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Figure 61. Handling of the haptic device and mapping of the virtual precision 

rotary tool on the device. The stylus represented the body of the virtual tool with 

the accessory attachment sitting at a 90° angle from the end of the stylus (This 

figure has been manipulated with an image editing software). 

The virtual environment consisted of a 3 x 4.5 cm metallographic replica area on the 

upper side of a pipe located in an industrial plant. The virtual environment presented general 

stationary regulatory conditions (Section 2.1.5). Environmental noise recorded from the 

performance of the task in the real industrial facilities during maintenance process was played 

to increase the realism of the virtual environment. Moreover, sounds produced by a real 

precision rotary tool operating on a material surface were also recorded and implemented to 

enhance the realism of the simulation of the polishing task.  

A training toolkit which enables building training programs to apply fundamental 

training methods such as part-task and whole-task training to the context of VR has been 

proposed in section 5.1. In this experimental study, the training program consisted only of 

part-task training. However, the effectiveness of part-task training to support motor learning 

and transfer trained motor skills to the performance of a polishing task was assessed through 

a single trial of whole-task training.  

Part-task training was inspired by progressive-part practices which enabled training 

on maintaining angle and force skills separately and simultaneously within range for a 

prolonged period of time. As described in section 5.1.1.2, a set of dial indicators was 

displayed in a panel located on the right side of the monitor so it did not interfere with the 

visualization of the virtual environment (Figure 62). Those indicators provided concurrent KP 
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on applied angle and theoretical exerted force applied on the material surface6. Furthermore, 

a stopwatch and a progression bar provided concurrent KR on the status of goal achievement. 

Concurrent KR informed about the remaining time during which participants should keep 

maintaining the trained motor skill(s) within range in order to achieve the goal of the training. 

The effectiveness of these indicators to train motor skills with regards to their design was 

assessed in a user evaluation test carried out by the Human Factors Research Group at the 

University of Nottingham (Langley et al., 2012).   

 

Figure 62. Part-task training enabled training angle and force skills separately and 

simultaneously in a virtual environment. Concurrent augmented feedback was 

provided through a set of indicators located in a side panel. 

As mentioned previously, the effect of part-task training on motor learning for the 

performance of a polishing task was assessed through a single trial of whole-task training. 

The trial allowed performing the polishing task as it is usually carried out in a real operating 

environment. However, concurrent KR was provided in the form of a colour map indicator 

located on the surface of the material, which provided information about the completion of 

the polishing across the metallographic replica area (Figure 63).  The colour map uses a 

gradual colour coding from red to green to depict the advancement of the task across the area 

(Section 5.1.2.2). Red corresponds to 0% of task completion, bright green represents 100% of 

task completion, and shades of orange and yellow are used to show intermediate levels of 

                                                 
6 The theoretical exerted force consists of the magnitude of the applied force on the material surface based on 

the penetration of the haptic device in the geometry (Section 5.2.1). 
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task completion. This colour map was also replicated and magnified in a window located on 

the lower right corner of the monitor (Figure 63).  

 

Figure 63. A trial of whole-task training supported the evaluation of the 

performance of a whole polishing task in a virtual environment. A colour map 

displayed on the area being polished enabled monitoring in real-time the 

advancement of the task. That colour map was also magnified and displayed in a 

panel located on the right lower corner of the monitor. 

6.2.3 Design and procedure 

The study used a between-group design to test the effect of motor skill training on the 

performance of a polishing task. Participants were randomly distributed into three groups of 

10 members. The condition of motor skill training was the independent variable. Three 

training condition levels were proposed: Full Training condition (FT), Haptic familiarization 

Training condition (HT) and Control Training condition (CT). Each group was assigned to a 

unique training condition.  

Each training condition included a period of familiarization with haptic interaction 

and a practice step (Table 10). After those steps, all participants performed an evaluation step 

carried out through a trial of whole-task training. During the evaluation step, the effect of the 

training condition on the performance of a polishing task was assessed. 
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Table 10. Training conditions assigned to groups 

Groups Familiarization step  Practice step Evaluation step 

FT Performed Performed Performed 

HT Performed Video Performed 

CT Video Video Performed 

 

Before each step, all participants received textual, verbal and graphical instructions 

(Appendix D). These explained the purpose of each step, the configuration of the virtual 

environment, the meaning of the visual feedback displayed on the monitor and the 

functioning of the virtual precision rotary tool, with an emphasis on the simulated forces and 

the handling of the haptic device.  

In the FT group, the participants performed the familiarization and the practice steps. 

In the familiarization step, participants manipulated the virtual tool following a series of 

exercises presented through the instructions.  A first exercise consisted of moving the virtual 

tool clockwise and anti-clockwise towards each corner of the area to be polished. A second 

exercise consisted of moving the virtual tool across the area. Both exercises were repeated 

when the virtual precision rotary tool was switched on so that participants could feel the 

generated forces that emulated the functioning of the tool. The familiarization step aimed to 

help participants in understanding the mapping of the workspace of the haptic device in the 

virtual environment.  

Once the familiarization step was complete, participants from the FT group performed 

the practice step which consisted of part-task training on angle and force skills. Participants 

were previously instructed about the ranges for angle and force skills required for the 

performance of a polishing task which were respectively set to 0º to10º, and 1 N to 5.3 N7. 

                                                 
7 These ranges were estimated asking the two expert metallurgists from Tecnatom S.A. to perform the task in 

the laboratory at the University of Malaga using a Phantom Desktop (Section 5.4.2). However, in the case of the 

maximum boundary of the range of correctness of force skill (5.3 N), it was not possible to provide such contact 

force feedback in this experimental study because the haptic device used here, a Phantom Omni, was only able 

to render forces up to 3.3 N. Beyond this level of force, the virtual stiffness of the object being contacted 

decreases, becoming a natural limit for the force to be applied by participants. Nevertheless, this is not a 

problem for the internal validity of the experiment, as this limit was consistent between the practice step and the 

evaluation step. 
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The design of the proposed part-task training was previously refined in a pilot experiment 

which involved 4 PhD students from the Human Factors Research Group at the University of 

Nottingham. The resulting design consisted of 10 exercises.   

In exercises 1 to 5, participants were required to maintain the virtual tool in a fixed 

position. In exercises 6, 7 and 8, participants were required to perform respectively circular 

(Figure 64.a), forward to backward (Figure 64.b) and left to right (Figure 64.c) motions 

across the surface area. In exercises 9 and 10, participants were asked to repeat the motion 

with which they felt more confident. After each exercise, participants rested for at least three 

minutes maintaining their wrist and forearm in a neutral position resting on the table. 

Nonetheless, they were free to prolong their resting as long as they felt necessary.  

 

Figure 64. During the practice step, all participants were presented three 

trajectories: (a) circular, (b) forward to backward and (c) left to right. In exercises 

6 to 10, FT were required to practice angle and force skills moving the virtual 

polishing tool across the metallographic replica area according to these 

trajectories. 

Each exercise was composed of 4 items of 60 seconds each in which participants 

attempted to maintain angle and force skills within the specified ranges continuously for 15 

seconds. After completing an item, participants were provided with augmented feedback in 

the form of visual and audio terminal KR (Section 5.1.1.2) which informed whether they had 

succeeded or failed at achieving this goal (Table 11).  
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Table 11. Design of the part-task training and schedule of the augmented 

feedback throughout part-task training items for each of the 10 exercises. 

Items 1 2 3 4 

Trained Skill(s) A F A&F A&F 

Concurrent KP: Angle & Force 

Angle (dial) XT  XT  

Angle (Sound)   

Force (dial) XT XT  

Force(Sound)   

Concurrent KR : Remaining time within range 

Bar & Stopwatch X X X X 

Terminal KR 

Visual X X X X 

Sound X X X X 

A   Angle 

F    Force 

A&F Angle & Force 

 
XT  Concurrent KP indicator 

shown with range which 
indicates the threshold 
values of the target skill 

 
X     Indicator shown but range 

is hidden 

 

For item 1, participants were asked to maintain the inclination of the virtual precision 

rotary tool within a given range. A dial indicator was displayed to show whether the angle 

was within the range or not (Table 11).  For item 2, participants were required to apply force 

on the surface area. This time they had to apply a force within a given range (Table 11). A 

different dial indicator was displayed to show whether the force was within range. For item 3 

participants were asked to simultaneously maintain the angle and the applied force within 

their respective ranges. Both dial indicators were displayed to angle and force (Table 11). In 

both dial indicators presented in these last items, the ranges for angle and force skills were 

marked as a green area (Figure 62). For item 4, participants were asked again to maintain 

angle and force within range, but this time no dial indicators were displayed (Table 11).  
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In the HT group, participants physically performed the initial familiarization step, but 

not the practice step. Therefore, they were aware of the mapping between the haptic device 

and visual/haptic system responses, but had not been specifically trained in the performance 

of angle and force skills required in the polishing task. Instead, this group watched a video of 

a screen recording of the part-task training performed by an expert user and received verbal 

explanations. The expert user was not shown on the video in order to prevent participants 

from mimicking motor skills by observation (Heyes & Foster, 2002).  

The CT group physically performed neither the familiarization nor the practice steps. 

Instead they watched two videos. This condition was included to allow the isolation of the 

impact of the familiarization exercises and the training activity on performance. The first 

video which substituted the familiarization step staged an expert user performing the 

familiarization exercises. Thus, any possible learning effect was discarded from the 

performance of the familiarization step. While watching the video, participants of the CT 

group received verbal explanations of the haptic sensations perceived by the expert. The 

second video which substituted the practice step was the same video watched by participants 

of the HT group. 

Finally, all groups were instructed to perform the evaluation step. During three 

minutes, participants attempted to complete the polishing across the metallographic replica 

area by applying trained skills and moving the virtual precision rotary tool according to the 

motions proposed to them through the practice step. Colour map indicators were displayed to 

monitor the progression of the polishing task. However, no indicators showed whether angle 

and force skills were or not within range. 

Afterwards, participants were interviewed and were required to rate a series of items 

and give their impression through a questionnaire (Appendix D). 

The total duration of the experiment was approximately of two hours for the 

participants of the FT group and one hour for those of other groups. 

6.2.4 Data Analysis 

Six dependent variables were measured. The first three referred to performance 

measures which were related to the completion of the polishing task across the 

metallographic replica area. Completion was first computed as a value between 0 and 100% 

for each pixel of the colour map and stored in a 64 × 64 completion matrix (Section 5.1.2.3): 

(1) the “Task Completion” was the average of the values stored in the completion matrix; (2) 
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the “Half-completion Area” was the percentage of area where the polishing was completed at 

more than 50%; (3) the “Full-completion Area” as the percentage of the area for which the 

polishing was completed at more than 80%. The other three dependent variables were related 

to the accuracy of angle and force skills:(4) the angle error time, (5) the force error time and 

(6) the total error time which respectively measured the total elapsed time when applied 

angle, force and either angle or force were maintained out of the range defined for the 

polishing task.  

At the end of the experiment, participants were required to rate a series of items 

related to their experience during the performance of the polishing task, and give their 

impression. Subjective data were collected in the form of a questionnaire through a series of 

closed-ended questions and raw textual data (Appendix D). A typical 5-level Likert-scale was 

used for ratings. 

In all, there were 33 questions arranged by themes: one item of perception of 

performance, one item of perception of accuracy, two items of easiness of the task, two items 

of easiness of interaction, two items of fatigue, three items of perception of the effectiveness 

of training, five items of perception of realism, six items of quality of feedback and 11 items 

of presence.  

6.3 RESULTS  

Measures of performance showed that participants of the FT group achieved 

higher means in comparison with non trained participants of HT and CT (Figure 65). 

A One-Way analysis of variance (ANOVA) was performed using SPSS statistical 

analysis software package release version 19.0.0., to test the effect of the training 

condition on the performance of a polishing task. Statistical significance was 

established at p < 0.05. The ANOVA reported significant differences between groups. 

The effect of the training condition was statistically significant for the task completion 

measures (F(2,27) = 33.47, p < 0.001), the half-completion area (F(2,27) = 39.23, p < 

0.001) and the full-completion area (F(2,27) = 34.90, p < 0.001).  
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Figure 65. Mean performance results along with the standard deviation (error 

bars) for each training condition. 

A Tukey´s HSD Post Hoc Test indicated that trained participants of the FT group 

performed significantly better than those from HT and CT who were not trained on angle and 

force skills (Table 12). Moreover, the analysis did not report any significant differences of 

performance between participants of HT and CT groups. 

Table 12. Multiple comparison of training conditions performance means  

Task completion Half completion area Full completion area 

FT vs. HT p < 0.001 p < 0.001 p < 0.001 

HT vs. CT p = 0.935 p = 0.949 p = 0.933 

CT vs. FT p < 0.001 p < 0.001 p < 0.001 

Note. Significant level at p < 0.05. 
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Results obtained from error time measures suggested that trained participants of the 

FT group were more capable of maintaining applied angle and force within range compared 

to non trained participants from HT and CT (Figure 66).  

 

 

Figure 66. Means error time differences between training conditions. 

A one-way ANOVA analysis highlighted a significant effect of training 

conditions on angle error time (F(2,27) = 6.29, p = 0.006), force error time (F(2,27) 

= 12.54, p < 0.001) and total error time (F(2,27) = 23.28, p < 0.001). A Tukey´s HSD 

Post Hoc analysis indicated significant or marginally significant differences between trained 

participants of the FT group and non trained participants from HT and CT groups (Table 13). 

Although a significant difference in angle error time was reported between participants from 

FT group and those from HT, there was only a marginally significant difference between FT 

and CT and no significant difference between HT and CT. Participants of the CT group 

appeared slightly more accurate at maintaining angle within range than those from HT. 

However, participants of the FT group appeared significantly more accurate to exert forces 

than those from HT and CT. No significant difference was found between non trained 

participants from HT and CT groups.  
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Table 13. Multiple comparison of training conditions error times  

Angle error time Force error time Total error time 

FT vs. HT p = 0.005 p < 0.001 p < 0.001 

HT vs. CT p = 0.599 p = 0.949 p = 0.815 

CT vs. FT p = 0.051 p < 0.001 p < 0.001 

Note. Significant level at p < 0.05. 

 

Subjective data collected through the questionnaire consisted of rated items arranged 

by themes, and comments. For each group, ratings of items were averaged per theme in order 

to provide a mean score in accordance with the Likert scale (Table 14). The ratings suggested 

that participants of the FT group found the task and the interaction paradigm to be easier 

compared to those from groups HT and CT. They also reported that they felt their 

performance to be more effective and accurate, and had a better opinion concerning the 

effectiveness of the training they received.  However, participants from CT group also 

reported, to a lesser extent, satisfaction about the training condition they were assigned. In 

general, participants of the CT group tended to provide higher ratings compared to those of 

participants from HT. Moreover, all participants felt relatively involved in the virtual 

environment for the performance of the task, and have a positive opinion concerning the 

realism of the simulation and the quality of the provided feedback.  



 

 

 

 

 

Table 14. Descriptive (means and standard deviation8) of the averaged ratings for themes.  

 
Easiness of 

task 
 

Easiness of 
Interaction 

 
Perception of 
performance 

 
Perception 
of accuracy 

 Fatigue  
Perception 
of realism 

 Presence  
Perception 
of training 

 
Quality of 
feedback 

 M ± SD  M ± SD  M ± SD  M ± SD  M ± SD  M ± SD  M ± SD  M ± SD  M ± SD 

FT (N = 10) 3.7 ± 0.6  4.25 ± 0.4  3.9 ± 0.7  3.7 ± 0.8  3.8 ± 0.9  3.8 ± 0.8  3.9 ± 0.5  4.6 ± 0.4  4.25 ± 0.6 

HT (N = 10) 2.6 ± 1.15  3.15 ± 0.9  2.4 ± 1.3  2.8 ± 1.23  3.6 ± 0.8  3.7 ± 0.5  3.5 ± 0.5  3.3 ± 0.7  4.02 ± 0.5 

CT (N = 10) 3.25 ± 1  3.7 ± 0.7  2.8 ± 1.13  3 ± 0.9  3.9 ± 1.2  3.7 ± 0.5  3.8 ± 0.4  4.03 ± 1  4.4 ± 0.6 

All (N = 30) 3.2 ± 1  3.7 ± 0.8  3 ± 1.22  3.2 ± 1.05  3.8 ± 0.9  3.7 ± 0.6  3.7 ± 0.5  4 ± 0.9  4.22 ± 0.6 

Likert Scale quote: 1- denoting strongly disagree, 2 - disagree, 3 - neutral, 4 - agree, and 5 - strongly agree 

 

                                                 
8 The criterion used to represent means and standard deviation data were as follow:  

Data are rounded to one decimal point, unless that decimal is 1 or whether being a 2, the following is less than 5. In such cases means and standard deviation data are 

rounded to two decimal points. This approach will be followed onwards to express means and standard deviation data. 165
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Table 15. Statistics analysis (Kruskal–Wallis H-test) to test the significance of 

comparison of data mean ranks from all groups. 

Kruskal-Wallis Test Chi-Square df Asymp. Sig. 

Easiness of  the end task 4,521 2 0,104 

Easiness of  the haptic Interaction 10,805 2 0,005 

Perception of performance 7,757 2 0,021 

Perception of accuracy 3,953 2 0,139 

Fatigue 0,454 2 0,797 

Perception of realism 0,129 2 0,938 

Presence 3,237 2 0,198 

Perception of training 13,383 2 0,001 

Quality of feedback 2,480 2 0,289 

 

Mean scores for each group were compared in a Kruskal–Wallis H-test, with p < 0.05 

considered to indicate the statistical significance (Table 15). Significant differences were 

found between groups in the ratings of items related to the easiness of the interaction (H(2) = 

10.805, p = 0.005), the perception of task performance (H(2) =7.757, p = 0.021) and the 

perception of the effectiveness of the training (H(2) = 13.383, p = 0.001). A post-hoc all-

pairwise comparison Kruskal-Wallis One-Way ANOVA (k-Samples) conducted on 

statistically significant results reported significant differences between participants from 

groups FT and HT (easiness of the haptic interaction, p = 0.003; perception of performance, p 

= 0.024, and perception of the effectiveness of training, p = 0.001). However, no statistically 

significant difference was found between groups FT and CT, and neither between HT and 

CT.  

After the experiment, participants were strongly encouraged to provide comments 

related to their experience. The collected data were analyzed with a Theme-Based Content 

Analysis (TBCA) (Neale & Nichols, 2001), a methodology that aims to enhance the 

qualitative evaluation of interactive technologies and enables reporting opinions presented in 

the form of raw textual data in a consistent way (Appendix E).  

Almost all participants found the instructions and the colour map useful to understand 

what was asked and what was happening during the polishing task. However, couple of 

participants admitted some slight confusion to correlate the magnified colour map to the 



Chapter 6. Experimental Study 1 

167 

 

metallographic replica area. Moreover, participants considered the VR simulation to be quite 

realistic but the modelling of force to be a bit weak.  

Many participants commented the complexity of the task and their lack of accuracy. 

For instance, five participants from FT group, seven from HT and seven from CT reported 

some troubles and sometimes feeling confused applying the correct force on the surface of 

the material, while only two from HT and four from CT found difficult applying the correct 

angle. However, none of the participants from FT group mentioned the complexity of 

maintaining the angle within range.  

Although the proposed part-task training was long lasting, only three participants of 

the FT group reported to feel fatigue in the course of the experiment and four participants 

recognized that it was effective to support the motor learning and thus improve the task 

performance. Two other participants from FT group also highlighted that receiving more 

practice would have been appreciable in order to improve the performance of angle and force 

skills.  However, many participants from other groups, eight from HT and four from CT, 

considered that the training condition to which they were assigned was not sufficient to 

accurately perform the polishing task, and previous physical practice would have been 

necessary. Moreover, several participants from CT group underlined the complexity of 

converting the information presented in the videos into accurate motor skills.  

6.4 DISCUSSION 

In this experimental study, the effect of part-task training on the development of angle 

and force skills for the performance of a polishing task simulated in a virtual environment has 

been investigated. The design of the proposed part-task training has been refined during a 

pilot experiment. The resulting design was inspired by progressive-part practices of 

fractionized and simplified skills enhanced with concurrent and terminal augmented 

feedback. Moreover, a haptic device enabled simulating intrinsic information like that 

perceived in real operating environments.  

Three training conditions were tested. FT provided familiarization with the haptic 

interaction and enabled practicing independently and simultaneously angle and force skills 

required for the performance of a polishing task. HT provided only familiarization with the 

haptic manipulation. The training consisted in watching a video of the part-task training 
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performed by an expert. CT watched videos of the familiarization and the practice performed 

by an expert.  

The results showed that participants of the FT group were significantly more 

proficient performing the polishing task than those from HT and CT. This suggests that the 

proposed part-task training supports motor learning and enables novice participants to 

progress to a more advanced stage of learning such as the associative stage (Section 2.2.2.1). 

However, the significance of the measure of angle error time between participants from CT 

and FT groups is controversial. Effectively, results surprisingly reported a marginally 

significant difference between both groups. In contrast, as it was expected, a significant 

difference between participants from FT and HT groups and no significant difference 

between those from HT and CT were found. Thus, these findings highlight an issue in the 

design of the training condition assigned to participants of the CT group. More investigation 

would be needed to determine the nature of this issue. 

These findings enable discarding any significant learning effect due to the 

manipulation of the haptic device during the familiarization step, suggesting that motor 

learning occurred only through the practice step. The two experimental hypotheses are thus 

verified:  

1. The part-task training proposed throughout the practice step enhances motor 

learning which led to the successful development of angle and force skills. 

2. Motor skills trained through part-task training can be transferred to the 

performance of a whole polishing task simulated in a virtual environment.  

The experimental results concur with those of Morris et al. (2007), which stated that 

the effectiveness of training with augmented feedback provided through visual and haptic 

cues enhanced learning of complex motor skills such as force skills. However, the complexity 

of the polishing task is far from that of the task proposed by Morris et al. (2007). Effectively, 

in this experimental study, the correct force consists of a force exerted within a specific 

range, whereas in the study of Morris et al. (2007), the correct force varied along a passively 

guided trajectory.  However, the complexity of the polishing task was high to the extent that 

the stability of applied angle and force tended to be altered by changing tangential forces 

generated by the haptic device while moving across the metallographic replica area. 

Moreover, on the basis of the findings of Balijepalli and Kesavadas (2006), it is assumed that 

the curvature of the surface perceived while moving across the area also has a significant 
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effect on the stability of applied forces. Thus, the polishing task presented an increased 

degree of complexity to the extent that participants were required to pro-actively perform 

several motor skills simultaneously:  

1. Angling correctly the virtual precision rotary tool. 

2. Applying forces within a specific range 

3. Moving the virtual tool within the metallographic replica area. 

4. Attempting to reproduce one of the three motion models across the area.  

Augmented feedback was provided in the form of visual concurrent KR and KP in 

order to enhance motor learning throughout part-task training. However, in accordance with 

Esen et al. (2004), concurrent KP was sometimes withdrawn in order to prevent trainees to 

only rely on it for the estimation of the correctness of trained motor skills. Alike in the 

proposed part-task training, Esen et al. (2004) used such augmented feedback to provide 

performance information on applied forces while training a bone drilling operation. They 

have demonstrated that force skills could be learnt using that source of information.  

In more recent studies, Esen et al. (2008a, 2008b) proposed an online haptic 

interaction paradigm which was used to provide the haptic sensation perceived by a trainee to 

an experienced instructor. Thus, the system enabled the experienced instructor to interfere 

with the performance of the force skill. In their studies, they have shown that training assisted 

by verbal instructions based on visual and haptic observation was generally more effective to 

enhance the learning of force skills than other assisted training modes. However, Todorov et 

al. (1997) have demonstrated that training of tacit motor knowledge resulted to be more 

effective with visual augmented feedback when compared to verbal guidelines provided by 

an experienced instructor. Alike angle and force skills involved in the performance of the 

polishing task, motor skills trained by Todorov et al. (1997) could be hardly refined with 

accuracy through verbal instructions.  Therefore, the augmented feedback scheduled 

throughout the part-task training suggested in this experimental study appeared to be superior 

for accurate skills adjustments compared to verbal guidelines usually provided by an expert 

metallurgist during conventional training.  
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6.5 CONCLUSION 

In this chapter, the effectiveness of part-task training inspired by progressive-part 

practices of fractionized and simplified skills, enhanced with haptic force feedback and 

augmented feedback, has been assessed. Experimental results suggest that part-task training 

was an effective method to train angle and force skills for the performance of a whole 

polishing task simulated in a virtual environment.  

In the following chapter, the effectiveness of the VR training system to train on fine 

grinding and polishing tasks is investigated. VR training of angle and force skills for both 

tasks is proposed through a training program composed of:  

1. Part-task training of angle and force skills inspired by progressive-part 

practices, enhanced with augmented feedback and haptic force feedback, as 

proposed in this experimental study. 

2. Whole-tasks training which enables practicing fine grinding and polishing 

tasks as in real operating environments. 
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Chapter 7. Experimental Study 2 

7.1 INTRODUCTION 

As explained in chapter 4, conventional training on fine grinding and polishing tasks 

in the context of the metallographic replica technique has issues (Section 4.2.2). However, on 

the basis of outcomes of the experimental study 1 presented in chapter 6, the application of 

training methods such as part-task and whole-task training in VR enhanced with haptic force 

feedback is believed to enable the development of angle and force skills required in both 

tasks.  

As detailed in Section 3.2, whole-task training in VR has been found to effectively 

support the performance of motor skills involved in complex manual operations (Suebnukarn 

et al., 2010; Johanesson et al., 2010; Rhienmora et al., 2011; Oren et al., 2012). Similarly, 

previous research has highlighted the effectiveness of part-task training in VR to support 

motor learning (Esen et al., 2004; Aggarwal et al., 2006; Eid et al., 2007; Sternberg et al., 

2007; Esen et al., 2008a; Esen et al., 2008b; Aggarwal et al., 2009; Iwata et al., 2011; 

Luciano et al., 2012). However, to the best of the knowledge of the author, conclusions 

concerning the effectiveness of part-task training procedures based on the fractionation of 
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concurrent motor skills are still missing. Moreover, many of the works previously mentioned 

have proposed full operative training procedures through which part-task components were 

gradually integrated into a whole-target task (Esen et al., 2004; Aggarwal et al., 2006; Eid et 

al., 2007;  Sternberg et al., 2007; Aggarwal et al., 2009). Nevertheless, part-task and whole-

task training have been rarely associated in a common training framework to support the 

development and the performance of motor skills in the context of a whole-task as did 

Aggarwal et al. (2009). 

This chapter presents an experimental study which was carried out over three days 

during the demonstration phase of the ManuVAR project (Appendix C) at Tecnatom S.A. 

facilities. Two expert metallurgists participated in the experimental study during the first day 

and six non-expert workers during the following two days. 

This experimental study consists of two experiments which investigate the 

effectiveness of part-task and whole-task training to support motor learning. Chapter 6 has 

presented an experimental study which has already highlighted that part-task training enables 

the successful development of angle and force skills for the performance of a polishing task 

in a virtual environment. However, in this chapter, the first experiment explores whether the 

part-task training of those fine motor skills that are required in a polishing task can be also 

extended to a fine grinding task for which a different range of the angle skill is defined 

(Section 7.2). In the second experiment, the effectiveness of whole-task training is 

investigated along with the capability of VR simulations to provide a realistic representation 

of the performance of fine grinding and polishing tasks (Section 7.3). 

 

Part of the experiment 2 presented in this chapter has been accepted for publication in 

the following paper: 

Poyade, M., Molina-Tanco, L., Reyes-Lecuona, A., Langley, A., D’Cruz, M., Frutos, 

E., & Flores., S. (2012, October). Validation of a haptic virtual reality simulation in 

the context of industrial maintenance. Proceedings of the Joint VR Conference of 

euroVR (JVRC 2012) and EGVE, Madrid, Spain. 

7.2 EXPERIMENT 1: PART-TASK TRAINING  

As mentioned previously, on the basis of outcomes of the experimental study 

presented in chapter 6, this experiment investigates the effectiveness of part-task training 
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inspired by the fractionation of concurrent motor skills and enhanced with augmented 

feedback, to support motor learning for fine grinding and polishing tasks. The first hypothesis 

formulated in chapter 6 was tested in this experiment for both tasks: Part-task training is 

effective in improving the proficiency of trainees in applying angle and force skills for fine 

grinding and polishing tasks.  

7.2.1 Methods 

7.2.1.1 Participants 

Six trainees (1 female and 5 males) aged from 30 to 55 took part in the experiment. 

All trainees were non-expert workers from Tecnatom S.A. One declared that he/she was 

skilled in performing the metallographic replica technique, the other four had little 

knowledge and another one was a complete novice. However, all trainees received previous 

procedural training through which they acquired theoretical knowledge about the 

metallographic replica technique (Appendix C). They were also familiar with the 

manipulation of power tools but they had no previous experience with VR technology and 

haptic device handling.  

All trainees filled in a consent form before the procedural training and were informed 

about the purpose of the experimental study and publication policies (Appendix D). Trainees 

reported no arm or wrist disabilities and only one trainee (trainee 3) reported colour blindness 

as uncorrected visual impairment. 

7.2.1.2 Apparatus 

The VR system ran on the ManuVAR platform distributed on two workstations 

(Appendix C). PC 1 supported the ManuVAR technological elements in charge of the 

management of the platform (Poyade et al., 2011) and a haptic server especially designed for 

ManuVAR. A Phantom Desktop, a haptic device able to render a maximum force of 7.9 N on 

3 DOF, enabled interacting within the virtual environment (Appendix A). PC 2 displayed the 

virtual environment in which part-task training was carried out, on a 3D screen (W: 1500 x 

H: 1200 mm) with a resolution of 1280 x 960 pixels. The 3DVia Virtools VR player rendered 

the virtual environment at a refresh rate of 60Hz. The virtual environment was visualized 

through a pair of passive stereoscopic glasses equipped with a set of infrared light reflective 

markers which were tracked by 6 infrared cameras from Natural Point Optitrack in order to 
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estimate the point of view of the performer (Appendix 

adjoining room was used to display the instructions.

Trainees stood at about 1 m in front of the 3D screen (

was placed in front of them and elevated so the haptic workspace physically matched with the 

manipulation workspace in the 

Figure 67. A worker performs 

angle and force within specific 

Trainees were asked to handle the haptic device as if it were a real portable power 

tool. The stylus represented the body of the virtual power tool with the rotating wheel 

attachment sitting at a 90° angle from the end of the stylus (

Motor Skill Training using Virtual Reality and Haptic Interaction - A case study in industrial maintenance

the point of view of the performer (Appendix B). A separate laptop located in an 

adjoining room was used to display the instructions.  

stood at about 1 m in front of the 3D screen (Figure 67). 

was placed in front of them and elevated so the haptic workspace physically matched with the 

manipulation workspace in the virtual environment.  

. A worker performs a part-task training session, attempting to apply 

specific ranges.  

to handle the haptic device as if it were a real portable power 

The stylus represented the body of the virtual power tool with the rotating wheel 

attachment sitting at a 90° angle from the end of the stylus (Figure 68).  

 

A case study in industrial maintenance 

). A separate laptop located in an 

). The haptic device 

was placed in front of them and elevated so the haptic workspace physically matched with the 

 

attempting to apply 

to handle the haptic device as if it were a real portable power 

The stylus represented the body of the virtual power tool with the rotating wheel 
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Figure 68. Mapping of the virtual precision rotary tool on the Phantom Desktop 

stylus (This figure has been manipulated with an image editing software). 

The virtual environment consisted of a 3 x 4.5 cm metallographic replica area located 

on the lateral of a pipe in an industrial plant (Figure 69).  

A set of performance indicators, displayed in a lateral panel (Figure 69), provided 

concurrent augmented feedback in the form of Knowledge of Performance (KP) and 

Knowledge of Results (KR) to inform respectively about motor skill accuracy and goal 

achievement (Section 2.4.2). KP indicators consisted of a dial and bar gauge that respectively 

showed the value of angle and force being applied. For both skills, indicators also displayed 

the threshold values which referred to the boundaries of the target ranges. Moreover, KR was 

displayed in the form of a clock which indicated the remaining time during which the trained 

skills should be maintained within thresholds in order to achieve the goal of the training item. 

As mentioned in Section 5.1.1.2, the effectiveness of those indicators to support motor 

learning has been previously discussed in an experimental study carried out at the University 

of Nottingham (Langley et al., 2012). 

 

Figure 69. Virtual environment in which part-task training took place along with 

the lateral panel in which concurrent augmented feedback was provided.  

Moreover, as in the experimental study presented in chapter 6, recorded 

environmental noise and sounds from a real  precision rotary tool with its rotating wheel in 



Motor Skill Training using Virtual Reality and Haptic Interaction - A case study in industrial maintenance 

176 

 

contact with a material, or when rotating freely, were rendered in order to enhance the 

realism of the simulation. 

7.2.1.3 Design and Procedure 

The experimental procedure followed a within-subject design. The performance of 

participants was compared before and after part-task training. The procedure to follow 

consisted of: 

1. A pre-evaluation. 

2. Two part-task training exercises9.  

3. A post evaluation.  

Before starting, trainees were assigned a unique identification number and were 

randomly distributed in two groups: One group performed part-task training related to a fine 

grinding task and the other to a polishing task. Previously to the experiment, trainees were 

verbally and textually informed about the purpose of the experiment and the procedure they 

were required to follow (Appendix D). They were also given a description of the virtual 

environment and instructed about the visual augmented feedback they would receive 

throughout part-task training.  

The pre-evaluation was composed of six items of one minute each in which trainees 

attempted to maintain angle and force skills for 10 seconds within specific ranges for the task 

to which they were assigned. Ranges had been discussed and set heuristically by the two 

expert metallurgists from Tecnatom S.A. For the fine grinding task, the ranges for angle and 

force were respectively set to 75º to 90º and 1N to 5N, whereas for the polishing task, the 

ranges were 0º to 20º and 1N to 5N. No visual feedback on the performance of angle and 

force skills (concurrent KP) was provided while performing the pre-evaluation.  

Each part-task training exercise was composed of a sequence of four training items of 

60 seconds, inspired by progressive-part practices (Section 2.3.3). In each item, trainees 

attempted to maintain angle and force skills separately or jointly within ranges for 10 

seconds. In items 1 and 2, participants were required to maintain respectively angle and force 

within the specified ranges. Visual indication of angle in item 1 and force in item 2 were 

provided so that trainees could refine the practised skills (Table 16). In item 3, angle and 

                                                 
9 Due to restrictions on the availability of workers to perform the experiment, part-task training was shortened to 

two training exercises. 
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force skills were combined in order to be practised together (Table 16). Trainees tried to 

maintain both skills concurrently within the required ranges using the visual aid provided by 

angle and force indicators (Figure 69). In item 4, trainees attempted the same as proposed in 

item 3 but KP indicators were withdrawn (Table 16). Thus, trainees were encouraged to 

perform based on the motor knowledge acquired throughout previous items. After each item, 

trainees were provided terminal KR as a positive or negative hint in the form of a green tick 

or a red cross that stated for goal achievement (Section 5.1.1.2). Between each exercise, each 

trainee was required to rest in an adjoining room while another trainee from the other group 

performed the equivalent exercise. 

Table 16. Design of the part-task training and provision of the augmented 

feedback in each training item. 

Items 1 2 3 4 

Trained Skill(s) A F A&F A&F 

Concurrent KP: Angle & Force 

Angle (dial) XT  XT  

Angle (Sound)   

Force (bar) XT XT  

Force(Sound)   

Concurrent KR : Remaining time within range 

Clock X X X X 

Terminal KR 

Visual X X X X 

Sound X X X X 

A   Angle 
F    Force 
A&F Angle & Force 

 
XT  Concurrent KP indicator shown 

with range which indicates the 
threshold values of the target 
skill 

 
X     Indicator shown but range is 

hidden 

 

After the two training exercises, participants performed the post-evaluation which was 

designed as the pre-evaluation.  
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At the end of the experimental study, participants were interviewed and were required 

to rate their training and give their impression through a questionnaire (Appendix D). 

7.2.1.4 Data analysis 

Two measurements were carried out for all participants during the pre and post 

evaluations in order to be compared. The collected data consisted in:  

1. Measures of effectiveness of part-task training to support learning of angle and 

force skills revealed by the number of successfully completed items for each 

participant. 

2. Measures of efficiency expressed by the average completion time of items for 

each participant. 

At the end of the experimental study, trainees were invited to give their impression 

and rate their training. Subjective data were collected in the form of a questionnaire through a 

series of open and closed-ended questions (Appendix D). A typical 5-level Likert-scale was 

used for ratings assigned to closed-ended questions. 

7.2.2 Results 

Considering that the number of participants was too small to perform a statistical 

analysis, experimental results are presented for each trainee.  

Measures of effectiveness of part-task training suggested that all trainees were able to 

achieve the six items proposed during the post-evaluation for both tasks (Figure 70.a & b). 

However, only one participant (trainee 4) from the group assigned to the polishing task 

succeeded in achieving the six items proposed during the pre-evaluation (Figure 70.b).  

Measures of efficiency showed that trainees were more efficient in completing the six 

items during the post-evaluation compared to those of the pre-evaluation (Figure 71.a & b). 

Although it is not possible to claim without statistical analysis, these findings point out that, 

participants became more accurate at maintaining angle and force skills within the specified 

ranges after motor skill training. Thus, part-task training enabled trainees to become more 

proficient performing motor skills required in both tasks.  

Moreover, trainees provided high ratings of part-task training with the statements that 

tasks were easy to complete and indicators of angle and force were helpful in performing the 

items scored near to the maximum (Table 17). None of the participants reported any physical 
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discomfort and found difficult to use the haptic device to interact within the virtual 

environment although one trainee mentioned that more time would have been necessary to 

get familiarized with the interface.   

 The trainees also positively rated the visual quality of the virtual environment 

displayed on the 3D screen and found that it did not impact on their performance. However, 

they commented that the quality of graphics could still be improved in order to bring more 

realism to the virtual environment, and the size and the workspace of the virtual precision 

rotary tool could be refined to fit with more realistic dimensions (Appendix F). 

 

Figure 70. Comparison of performance of trainees before and after part-task 

training on angle and force skills for (a) fine grinding and (b) polishing tasks. 

 

 

Figure 71. Comparison of the average completion time of items before and after 

practice of angle and force skills for (a) fine grinding and (b) polishing tasks. 
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Table 17. Mean scores and ranges given by trainees after part-task training. 

Nº Statements Mean Range (N = 6) 

1 I found it easy to do the task 4.17 4-5 

2 I found the force feedback helpful to perform my task  4.7 3-5 

3  I found the angle feedback helpful to perform my task 4.7 3-5 

4 The system provided adequate feedback to show the time 

that has passed during the task 

4.3 3-5 

5  I found it easy to learn how to use the haptic device 4.3 4-5 

6 It was easy to use the haptic device 4.5 4-5 

7 Virtual representations of objects moved in a natural way 4 3-5 

8 I liked the way that the motor skills training application10 

was realized 

4.17 3-5 

9  I did not experience any physical discomfort during the 

task 

4.8 4-5 

Likert Scale quote: 1- denoting strongly disagree, 2 - disagree, 3 - neutral, 4 - agree, and 5 - 

strongly agree 

7.2.3 Discussion  

These findings suggest that the proposed part-task training, even when performed 

during a short time, enabled the successful development of angle and force skills according to 

the requirements for fine grinding and polishing tasks. These findings are actually in 

agreement with those presented in chapter 6 for the polishing task. Thus, the initial 

hypothesis addressed in chapter 6 has been thus newly verified for the polishing task. 

Moreover, in this experiment, the effectiveness of part-task training has also been 

demonstrated for a fine grinding task for which the range for angle skill was different. 

Although the verification of the initial hypothesis for a fine grinding task cannot be claimed 

as in chapter 6 due to the lack of experimental results, with regards to the results obtained in 

this experiment and considering the principle of generalization of motor programs (Section 

                                                 
10 In the context of the ManuVAR demonstration phase, the VR training system supporting part-task training 

was referred as motor skill training application. 
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2.2.1.2) presented by Schmidt (1975), it is highly probable the initial hypothesis to be also 

true in the case of a fine grinding task.  

From Figure 71, it can be noticed that participants appeared to be more efficient 

maintaining motor skills within the specified ranges in the case of the polishing task. This 

suggests that motor skills required for polishing were easier to apply when compared to those 

of a fine grinding task. One possible explanation would be that the estimation of correct angle 

for polishing was more intuitive. However, more investigation is needed to explore this. 

These findings also suggest that the proposed scheduling of concurrent augmented 

feedback (KP and KR) provided throughout training exercises was effective to support motor 

learning. Effectively, once angle and force indicators were withdrawn, as in the post 

evaluation items, the performance of those motor skills did not worsen. Thus, augmented 

feedback provided in the form of concurrent KP gradually withdrawn throughout part-task 

training and concurrent KR always provided did not have any guidance effect as described by 

Salmoni et al. (1984), Schmidt & Wrisberg (2008) and Ranganathan & Newell (2009). 

Moreover, as discussed in chapter 6, these experimental results are in concurrence with Esen 

et al. (2004), Morris et al. (2007) and Esen et al. (2008a, 2008b) to the extent that the 

suggested training enhanced with such augmented feedback enabled learning complex forces. 

However, as far as it has been investigated, no experimental data concerning the learning of 

the angle skill in virtual environments have been found. Thus, these experimental results 

allow filling this gap demonstrating that VR training can also support the development of 

angle skills within distinct ranges.  
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7.3 EXPERIMENT 2: WHOLE-TASK TRAINING 

In the context of the ManuVAR project, this experiment investigates the effectiveness 

of whole-task training to support performance improvements for fine grinding and polishing 

tasks. Moreover, this experiment also explores whether task simulations proposed through the 

whole-task training provide a realistic representation of the reality to the extent that the 

simulation of task performance allows discriminating between the level of expertise of expert 

metallurgists and non-expert workers.  

In this experiment, two hypotheses have been thus formulated: 

1. Whole-task training consists of an effective training for the performance of 

fine grinding and polishing tasks. 

2. Task simulations proposed through the whole-task training provide a realistic 

representation of task performance to the extent that levels of expertise 

acquired in real operating environments can be sucessfully applied to the 

context of VR training. 

7.3.1 Methods 

7.3.1.1 Participants 

The six trainees involved in the experiment 1 (Section 7.2) were invited to participate 

in this experiment. Moreover, two expert metallurgists (2 males) aged 31 and 35 also took 

also part in the experiment. Expert metallurgists had several years of experience manipulating 

power tools in the context of the mechanical preparation of material surface required in the 

metallographic replica technique, and had very little experience with haptic device handling 

in virtual environments. Expert metallurgists did not report any arm or wrist disabilities, and 

uncorrected visual impairment. 

7.3.1.2 Apparatus 

The experimental setup described for the experiment 1 (Section 7.2.1.2) was reused in 

this experiment but PC 2 displayed the virtual environment in which whole-task training 

occurred. 

As in experiment 1, participants stood at about 1 m in front of the 3D screen and 

handled the haptic device placed in front of them as if it were a real portable power tool 

(Figure 72).  
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Figure 72. A trainee performs a whole-task training session, using the colour map 

on the metallographic replica area along with the magnification represented in the 

lateral window. 

The virtual environment was also similar to that of experiment 1 (Figure 69). 

However, for the whole-task training, there was no lateral panel to provide concurrent 

augmented feedback on the performance of the trained motor skills. Instead a colour map 

indicator laid on the metallographic replica area provided concurrent KR. As it has been 

presented in Section 5.1.2.2, the colour map used a colour coding (from red to green) to 

inform about the completion of the task on the metallographic replica area (Figure 73). The 

colour map was also magnified and shown in a lateral window located on the right lower 

corner of the monitor (Figure 73). 
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Figure 73. Virtual environment in which whole-task training took place. 

7.3.1.3 Procedure 

The experimental procedure consisted of a within-subject design. The distribution of 

trainees into two groups was maintained as in experiment 1. Expert metallurgists repeated the 

training procedure for each task, as described below for trainees.  

Before starting, all trainees received verbal and textual instructions about the purpose 

of the task and were explained how to interpret the information provided by the colour map 

(appendix D).  Then, trainees performed a pre-evaluation step composed of two items of 3 

minutes:  

1. A familiarization item during which they were asked to perform the task they 

were assigned, using the visual aid provided by the colour map indicators.  

2. A pre-evaluation item during which they performed the task without visual 

feedback.  

Trainees practised the whole-task through two training items of 3 minutes11. For each 

item, colour map indicators were displayed on demand continuously for 10 seconds. Between 

each item, the trainee rested in an adjoining room while another trainee from the other group 

performed the equivalent item.  

                                                 
11 As for part-task training, due to restrictions on the availability of workers to perform the experiment, whole-

task training was shortened to two training items. 
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Finally, trainees were evaluated through a post-evaluation item which consisted of 

performing the whole-task during 3 minutes with no colour map. Afterwards, trainees were 

interviewed. As in experiment 1, they were required to rate the training and give their 

impression through a questionnaire (Appendix D). 

7.3.1.4 Data analysis 

Measurements were carried out during the pre and post-evaluation items. The 

collected data provided three measures of performance expressed in the form of percentages 

which stated for distinct levels of task completion12:  

1. The “Task Completion” was the average of the values stored in the matrix.  

2. The “Half-completion Area” was the percentage of area where the task was 

completed at least at 50%. 

3. The “Full-completion Area” as the percentage of the area for which the task 

was completed at more than 80%.  

As in experiment 1, participants were invited to share their opinion and rate the 

training through a questionnaire composed of open and closed-ended questions (Appendix 

D). A typical 5-level Likert-scale was used for ratings assigning the following statements to 

closed-ended questions.  

7.3.2 Results 

As in experiment 1, the statistical analysis of results could not be conducted, thus 

experimental results are here presented for each participants.  

Measures of performance showed the effect of whole-task training on task 

completion, half-completion area and full-completion area for fine grinding and the polishing 

tasks (Figure 74). Overall, the findings highlight the general trend of improvement of 

performance after whole-task training. Although, improvements were slight in the case of the 

fine grinding task, the performance of trainees generally tended to improve. However, trainee 

1 was not as successful in performing the fine grinding task during the post-evaluation as 

                                                 
12 These were obtained from the processing of the data stored in the elements of the matrix �64×64(�) 
corresponding to the percentages of task completeness in the pixels of the colour map (Section 5.1.2.3). 
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he/she was during the pre-evaluation (Figure 74.a, c & e), and all participants but one (trainee 

2) performed the polishing task better after whole-task training (Figure 74.b, d, & f). 

Moreover, measures collected during the pre-evaluation item revealed that expert 

metallurgists were able to complete both tasks achieving higher performance rates than 

trainees (Figure 75). This suggests that simulations proposed through the whole-task training 

provided a realistic representation of task performance enabling differentiating between 

expert and non-expert workers.  

All participants were mostly positive about the whole-task training although, one 

trainee (trainee 6) disagreed with the statements concerning the easiness of the task and the 

understanding of what was happening during the task. This trainee stated that he/she had 

experienced difficulties on correctly applying force on the material surface. 

All participants found the user interface very intuitive, the colour map to be helpful 

even if one trainee (trainee 3) reported to be colour-blind, and appreciated the simulation of 

the virtual environment and haptic sensations (Table 18). Trainees reported that the 

simulation” fits the reality of the work” and expert metallurgists highlighted the realism of the 

simulated tool and the effectiveness of the whole-task training because it enabled to put a 

performer in the context of the mechanical preparation tasks required in the metallographic 

replica technique (Appendix F). 

Moreover, as in experiment 1, participants positively rated the visual quality of the 

virtual environment displayed on the 3D monitor while performing the whole-task training 

and found that it did not impact on their performance. As well, comments concerning 

graphics quality, the size and the workspace of the virtual power tool reported in experiment 

1 could be also applied to this experiment. 
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Figure 74. Measures of performance for all trainees before and after whole-task 

training: Completion of (a) the fine grinding task and (b) the polishing task; Half-

completion area for (c) the fine grinding task and (d) the polishing task; Full-

completion area for (e) the fine grinding task and (f) the polishing task. 
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Figure 75. During the pre-evaluation, expert metallurgists were more efficient 

than trainees, performing (a, c, e) the fine grinding task and (b, d, f) the polishing 

task. 
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Table 18. Mean scores and ranges given by the expert metallurgists and trainees 

after performing on the training simulator 

Nº Statements 

Experts (N = 2) Trainees (N = 6) 

Mean Range  Mean Range 

1 I found it easy to do the task 4.5 4-5 3.7 2-5 

2 The user interface seemed intuitive to use 5 5 4.5 4-5 

3 I understood what was happening during 

the task 

5 5 4 2-5 

4 I found the colour map helpful to perform 

my task 

5 5 4.8 4-5 

5 Virtual representations of objects moved 

in a natural way 

4.5 4-5 4.3 3-5 

6 I liked the way the simulation 

application13 was represented 

5 5 4 3-5 

7 I did not experience any physical 

discomfort during the task 

4.5 4-5 4.17 4-5 

8 It was easy to use the haptic device 4.5 4-5 4.7 4-5 

Likert Scale quote: 1- denoting strongly disagree, 2 - disagree, 3 - neutral, 4 - agree, and 5 - 

strongly agree 

7.3.3 Discussion 

Performance of trainees was first compared before and after training in order to 

highlight improvements subsequent to whole-task practice. In the overall, experimental 

results suggest that performance of trainees tended to improve after whole-task training, even 

though in some cases, improvements were slight. However, the performance of one trainee 

(trainee 2) was less efficient after whole-task training. That trainee later provided an 

explanation for his/her low performance rate commenting that throughout the post-evaluation 

item, “you don’t know where you are performing so it is not easy to do it”, “ I didn’t know 

how it was working it was blind work”. Moreover, even though it has not been reported in 

comments, the trainee stated that he/she felt tired prior to the experimental study. 

Nonetheless, these comments could also suggest the guidance effect of the augmented 

                                                 
13 In the context of the ManuVAR demonstration phase, the VR training system supporting whole-task training 

was referred as simulation application. 
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feedback as described by Salmoni et al. (1984), Wierinck et al. (2005), Schmidt & Wrisberg, 

(2008) and Ranganathan & Newell (2009). However, more investigation would be needed in 

order to verify the guidance hypothesis of the colour map indicator.  

The colour map indicator received high ratings from all participants and positive 

comments were provided such as “The colour map is useful, you can check the work you are 

performing and how you perform it” and “…it shows the point in which you have to polish”. 

However, as mentioned in section 7.2.1.1, one of the trainees (trainee 3) has reported colour 

blindness as uncorrected visual impairment. The interpretation of the augmented information 

provided through the colour map indicator was somehow problematic as the trainee was not 

able to distinguish some of the colour nuances. In order to enable that trainee to refer to the 

colour map indicator throughout the whole-task training, he/she was indicated how colours 

changed. Nonetheless, such visual impairment did not seem to affect that much task 

performance when compared to other trainees from the same group. However, a colour map 

using a grey colour coding has been later developed for colour blind people. This colour map 

has been presented in section 5.1.2.2.  

In the overall, experimental results enable verifying the hypothesis addressed on the 

effectiveness of whole-task training to support task performance improvements. However, 

due to restrictions to run the whole experimental study, whole-task training has been 

drastically shortened and most probably, task performance improvements would have 

resulted more outstanding after more intensive training. In that sense, experimental results 

would concur with findings of Suebnukarn et al. (2010) who have showed that multiple 

rehearsals of whole-task training led to significant improvements of task performance. 

However, in that case, a wider sample of trainees would also be necessary in order to allow 

running a statistical analysis of quantitative data.  

Performance of trainees before whole-task training was also compared to that of 

expert metallurgists in order to investigate whether VR simulations provided realistic 

representations of task performance enabling discriminating between different levels of 

expertise. Experimental results show that expert metallurgists were able to achieve higher 

performance than trainees. In that sense, task simulations enabled applying the levels of 

expertise acquired in real operating environments to the context of whole-task training in VR. 

Thus, simulations proposed in whole-task training consisted of realistic representations of 

both tasks performance. The second hypothesis formulated in this experiment has been 

therefore verified. These findings agree with with those obtained through similar research 
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studies carried out on nowadays successfully validated whole-task training simulators for 

surgical & dentistry tasks (Kalltröm, 2010; Rhienmora et al., 2011). However, in order to 

confirm the trend of whole-task training simulations to allow discriminating between several 

levels of expertise, a statistical analysis of performance means involving a wider sample of 

participants with different levels of expertise such as novice, intermediary, advanced and 

expert would be necessary. 

Similarly to Rhienmora et al. (2011), participants have also demonstrated a high 

degree of acceptance of the realism of task simulations proposed through the whole-task 

training. Effectively, positive comments concerning the realism of simulations have been 

provided by expert metallurgists “… it makes you feel that you are performing the real 

metallographic replica”, “ The environment is very good” and trainees “…it fits the reality of 

the work”, “...very similar to performing the real task” (Appendix F). Expert metallurgists 

also notified about the realism of the simulated power tool as “It feels like holding the real 

tool along with the vibration and sound”, which is in unison with the belief of Abate et al. 

(2009) that the addition of haptics contributes in increasing the realism of the interaction.  

7.4 CONCLUSION 

In this chapter, the effectiveness of the VR training system has been investigated. A 

training program has been suggested in order to allow training those motor skills that are 

relevant in the performance of fine grinding and polishing tasks on the VR training system. 

That training program consisted of two fundamental training methods: 

1. Part-task training inspired by the fractionation of angle and force skills usually 

performed simultaneously throughout fine grinding and polishing tasks, which 

enabled practicing those skills separately and then jointly.  

2. Whole-task training which consisted of a holistic approach to the performance 

of fine grinding and polishing tasks.  

Part-task training offered the opportunity to isolate each motor skill in order to be 

practice independently and jointly previously to whole-task training. In contrast, whole-task 

training did not allow focusing on the development of a particular motor skill but rather 

enabled practicing fine grinding and polishing tasks as in real operating environments. In that 

extent, part-task training was complementary to whole-task training. 
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Two experiments have been carried in order to evaluate the effectiveness of each 

training method to support motor learning. Moreover, the realism of the representation of task 

performance provided through whole-task training has been investigated in term of how well 

simulations enabled discriminating between several levels of expertise reported in real 

operating environments.   

In experiments 1 and 2, the effectiveness of part-task and whole-task training to 

support the development motor skills required in fine grinding and polishing tasks has been 

respectively established by comparing the performance of trainees before and after training. 

Moreover, in experiment 2, task performance of trainees was compared to that of two expert 

metallurgists, resulting in a clear differential of performance between both levels of expertise. 

Thus, simulations proposed through the whole-task training consisted of a realistic 

representation of the reality enabling applying levels of experience acquired in real operating 

environments to the context of VR training. However, more investigation involving a wider 

sample of participants offering a larger panel of levels of expertise is needed to confirm that 

trend. 
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Chapter 8. Discussion and Conclusion 

Traditional training of the fine motor skills required for fine grinding and polishing 

tasks in the metallographic replica technique consists of whole-task training and occurs under 

the supervision of an instructor. These motor skills are tacit knowledge which is complex to 

transfer verbally. Motor learning is hampered by performance assessment issues (Section 

4.2.2.1) and inaccurate instructions (Section 4.2.2.2). Hence, conventional training often 

remains complicated, exhausting and discouraging.  

Fundamental training methods such as part-task and whole-task training are believed 

to facilitate motor learning (Section 2.3). These training methods have been employed to 

successfully train fine motor skills that are relevant in clinical (Johnson et al., 2008; De 

Visser et al., 2011; Kolozsvari et al., 2011; Klein et al., 2012), educational (Klapp et al., 

1998; Clawson et al., 2001) and industrial (So et al., 2012) activities. However, part-task 

training based on the fractionation of concurrent motor skills, such as angle and force skills 

required in fine grinding and polishing tasks, may be hard to achieve in the real world. 

Moreover, the implementation of this training method in the real world would not resolve the 

issues which arise in conventional training (Section 3.2).  
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On many occasions, training of complex industrial manual tasks in VR has been 

considered to be superior to conventional training, as it enables solving issues which usually 

arise in real operating environments (Mujber et al., 2004; Lee et al., 2010). Moreover, VR 

technologies such as haptic force feedback devices are believed to enable realistic interaction 

within virtual environments (Abate et al, 2009; Dalto et al., 2010).Thus, the implementation 

of a haptic-based training system which allows part-task and whole-task training in VR, and 

also enables providing augmented feedback is believed to be effective for fixing those issues 

that arise in conventional training. Motor learning would be thus enhanced.  

This thesis introduces a VR training system enhanced with haptic force feedback, 

which aims to support the development of motor programs (Section 2.2.1) for the accurate 

performance of fine grinding and polishing tasks. This training system enables applying 

fundamental training methods in VR and allows the provision of augmented feedback 

throughout the training process (Chapters 4 & 5). The effectiveness of the system to support 

development of fine motor skills and transfer those skills to real operating environments has 

been investigated through two experimental studies (Chapters 6 & 7).  

In this chapter, the objectives of this thesis are addressed in the form of a discussion. 

The design of the suggested training and its effectiveness are argued with regards to the 

findings of other research studies in section 8.1. The objectives addressed by the 

experimental outcomes are discussed in section 8.2. Finally, the discussion presents the 

limitations of the VR training system and experimental studies in section 8.3, making 

recommendations for further research sequels in section 8.4. 

8.1 VR TRAINING 

This thesis has also proposed a training toolkit which allows building training 

programs that enable specifying the training to be carried out on the VR training system. A 

training program enables defining the training methods such as part-task and whole-task 

training, to be followed during the VR training (Section 8.1.1). Moreover, augmented 

feedback in the form of concurrent and terminal Knowledge of Results (KR) and Knowledge 

of Performance (KP) (Section 2.4.2) can be provided for a more effective motor skill training 

(Section 8.1.2). As well, haptic force feedback was used to simulate haptic intrinsic 

information in VR alike that perceived in real operating environments (Section 8.1.3).  



Motor Skill Training using Virtual Reality and Haptic Interaction - A case study in industrial maintenance 

196 

 

8.1.1 Training methods 

Part-task and whole-task training methods have been widely proposed to support 

motor learning through VR training (Basdogan et al., 2004; Morris et al., 2006; Abate et al., 

2009; Wang, Y. et al., 2009; Gutiérrez et al., 2010; Suebnukarn et al., 2010; Iwata et al., 

2011; Nishino et al., 2011; Rhienmora et al., 2011; Sung et al., 2011). A review of the current 

state of the art of the application of those fundamental training methods to the context of VR 

training has been proposed in section 3.2.  

8.1.1.1 Part-task training 

The part-task training suggested in this thesis was inspired by the progressive-part 

integration of fractioned practices of angle and force skills which are performed 

simultaneously in fine grinding and polishing tasks (Section 5.1.1). Despite the fact that part-

task training has been frequently proposed to support motor learning in VR on the basis of the 

segmentation of sequential motor skills (Youngblood et al., 2005; Aggarwal et al., 2009; 

Iwata et al., 2011, Luciano et al., 2012) and the simplification of task performance (Solis et 

al., 2003; Williams II et al., 2004a; Williams II et al., 2004b; Aggarwal et al., 2006; Wang, D. 

et al., 2006; Esen et al., 2008a; Esen et al., 2008b; Iwata et al., 2011), to the best of the 

knowledge of the author, the suggested part-task training has not been implemented so far. 

Therefore, this is considered to be an original approach for training concurrent motor skills in 

VR. Moreover, in concurrence with other works (Esen et al., 2004; Aggarwal et al., 2006; Eid 

et al., 2007; Von Sternberg et al., 2007; Bhatti et al., 2009), it was also suggested to include a 

gradual increase of the degree of complexity of motor coordination requirements through the 

addition of a motion pattern in order to bring part-task practices closer to the performance of 

the whole-target task. On the basis of findings of Saga et al. (2005) and Srimathveeravalli & 

Thenkurussi (2005) which have highlighted the complexity of performing force and motion 

skills simultaneously at an early learning stage, the suggested part-task training aimed to 

facilitate the successful development of the force skill at an early learning stage. Quantitative 

results from experimental studies presented in chapters 6 and 7 suggest that this kind of part-

task training was effective to learn angle and force skills for fine grinding and polishing tasks. 

However, it is difficult to compare these experimental results with findings of other research 

studies considering that no similar examples were found. Nonetheless, a comparison can be 

drawn with those studies which have highlighted the effectiveness of part-task training based 

on segmentation and simplification methods. Experimental results presented in this thesis are 
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consistent with their findings. The effectiveness of part-task training was also supported by 

the positive feedback provided by participants throughout both experimental studies. As some 

participants stated, “…training was good and my performance continued to improve”, “...I 

feel it very useful to maintain force, angle and trajectory…” and “With the training, my sense 

and capability of doing the task are improved”. 

8.1.1.2 Whole-task training 

The whole-task training evaluated in this thesis consisted of an holistic approach of 

the conventional training on fine grinding and polishing tasks.  In concurrence with several 

research studies (Moody et al., 2001; Johanesson et al., 2010; Kalltröm, 2010; Suebnukarn et 

al., 2010; Rhienmora et al., 2011; Oren et al., 2012), whole-task training has been shown to 

be effective to support motor skill training. Moreover, expert and non-expert workers gave 

very positive feedback: “I liked the simulator14”, “ I liked the training on the simulator”, “… I 

liked the learning method, it was very similar to performing the real task”. However, in 

accordance with Utley & Astill (2008) and Coker (2009), the suggested whole-task training 

which involved several concurrent motor skills is believed to be too challenging at an early 

learning stage. Thus, previous development of motor skills through part-task training, as 

proposed in experimental studies 1 and 2 (Chapters 6 & 7), may be useful to guarantee 

successful whole-task training.  

8.1.2 Augmented Feedback 

Augmented feedback in the form of KP and KR is believed to be particularly 

beneficial to enhance learning experiences (Schmidt & Wrisberg, 2008; Utley & Astill, 

2008). For this reason, it has been widely employed to support motor learning throughout VR 

training (Section 3.3). However, as noted in section 3.3, both KP and KR have been regularly 

associated with part-task training, whereas KR alone has been frequently provided in whole-

task training. In contrast, KP has been rarely employed in whole-task training. A possible 

explanation would be that whole-task training in VR aims to support task practice as in the 

real world, where the focus is on task performance, rather than on the execution of each 

independent motor skill.  

                                                 
14 In the context of the demonstration phase of the ManuVAR project, the term “simulator” referred to whole-

task training. 
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8.1.2.1 Knowledge of performance 

The training toolkit enables managing the provision of concurrent KP throughout 

part-task training. Concurrent KP was delivered through real-time visual and audio 

indicators, which provided feedback about angle and force skill accuracy with regards to a 

reference of correctness. The effectiveness of concurrent KP throughout part-task training 

was evaluated separately in a user evaluation test carried out by the Human Factors Research 

Group at the University of Nottingham (Langley et al., 2011). The results showed that 

performance improvements of participants who received visual concurrent KP throughout 

part-task training were significantly better when compared to those of participants who had 

no feedback. However, no significant differences were reported between participants who 

received concurrent KP in the form of audio information and those who had no audio 

feedback (Langley et al., 2011). Therefore, in concurrence with Wang, Y. et al. (2006), these 

results suggest that descriptive audio information giving concurrent KP is not always 

effective to improve task performance. For this reason, audio concurrent KP was not added to 

the design of part-task training in experimental studies 1 and 2 (Chapters 6 & 7). 

In both experimental studies, visual indication of accuracy of angle and force skills 

throughout part-task training consisted of dial gauges and vertical bars on which the desired 

range for the corresponding skill was indicated (Section 5.1.1.2). Several research studies 

have provided similar concepts of visual notification of motor skill accuracy with regards to 

an indication of the target skill (Balijepalli & Kesavadas, 2003; Solis et al., 2003; Esen et al., 

2004; Sewell et al., 2007; Esen et al., 2008b).  

Participants from both experimental studies considered those indicators to be “…good 

to learn the right angle and force”, “… good for training”, “… it is easier to understand how 

much to press”, “ … helpful for orientation”, and suitable as they indicated “…where the 

angle and force should be….”. However, the guidance effect of such augmented feedback has 

been suggested once: “…with feedback it was ok, but without feedback it was hard…” . Esen 

et al. (2004) and Wierinck et al. (2005) considered that the dominance of visual cues while 

training led to a loss of concentration on the haptic intrinsic feedback and therefore hampered 

motor learning. For this reason, concurrent KP was scheduled throughout part-task training in 

order to encourage participants to rely on their haptic intrinsic feedback. The resulting 

scheduling has shown to be effective to support motor learning and participants provided 

positive testimonies concerning its effectiveness as “This is a good practice combined with 

the unseen displays…”. 
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The VR training system did not allow providing terminal KP throughout part-task 

training, and neither concurrent nor terminal KP in whole-task training.  

8.1.2.2 Knowledge of results 

The VR training system allowed providing concurrent KR in order to assist 

performance throughout part-task and whole-task training. In the context of this thesis, 

concurrent KR is given through an alternative representation of task performance which aims 

to provide real-time information feedback about the status of goal achievement. Concurrent 

KR has been frequently provided in part-task (Balijepalli & Kesavadas, 2003; Von Sternberg 

et al., 2007; Luciano et al., 2012) and whole-task training (Johanesson et al., 2010). 

In this thesis, concurrent KR in whole-task training was provided through a colour 

map indicator which depicted the status of task completion across the metallographic replica 

area and aimed to inform about task progress over the time. Such augmented information was 

appreciated by participants from both experimental studies to the extent that “The colour map 

helps me to understand what I should do with the task, which area should be covered, and 

how to maximize the coverage area”, “… it shows the point in which you have to polish” and 

“The colour map is useful, you can check the work you are performing and how you perform 

it”. However, as for concurrent KP in part-task training (Section 8.1.2.1), the guidance trend 

of that kind of augmented feedback has been suggested by novice participants from 

experimental study 1 (Chapter 6): “... I let the colour screen be the guiding device” and “... 

The colour was what mattered most and helped me to put a less strong and more efficient 

force (judging from the colour) towards the end”. In order to prevent the guidance effect of 

concurrent KP in experimental study 2 (Chapter 7), the colour map was thus displayed on-

demand, making training more challenging. Overall, the on-request concurrent KR 

throughout whole-task training did not hamper motor learning. However, some negative 

comments provided by non-expert workers, such as “…you don’t know where you are 

performing, so it is not easy to do it” and “I didn’t know how it was working, it was blind 

work. In contrast, in the real world you can see what you are doing...”, tend to confirm the 

findings of (Rodriguez et al., 2010) which suggested that on-demand augmented feedback 

might not have the expected effect on the development of motor programs.     

Concurrent KR has also been provided throughout part-task training, in the manner of 

a real time indicator that provided information about the remaining time for goal achievement 

during the performance of training items. Similar augmented information was provided by 
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Balijepalli & Kesavadas, 2003 in order to support motor skill performance throughout part-

task training. However, although concurrent KR was provided continuously throughout part-

task training, motor learning was apparently not affected as suggested by Wierinck et al. 

(2005). Nonetheless, more investigation on the effect of the suggested concurrent KR in part-

task training would be needed.    

Terminal KR informs about goal achievement once the training has been completed. 

Terminal KR provided in the form of visual and/or audio information has been frequently 

used in part-task training (Esen et al., 2004; Williams et al., 2004b; Bhatti et al., 2009; Iwata 

et al., 2011) and whole-task training (Edmunds & Pai, 2008; Suebnukarn et al., 2010; 

Rhienmora et al., 2011). In the part-task training presented in this thesis, terminal KR 

consisted of visual and audio information which indicated whether the item objective has 

been achieved or not (Section 5.1.1.2). For whole-task training, terminal KR was not 

provided to participants. However, the VR training system allows providing terminal KR in 

the form of performance scores displayed by an evaluation system implemented on the 

ManuVAR platform (Appendix C). Thus, expert metallurgists and trainees can assess 

performance outcomes and learning curves for both tasks.  

The effect of terminal KR on motor learning has not been investigated in depth in this 

thesis. Thus, on the basis of experimental results, it can only be said that terminal KR 

provided after each items of part-task training did not seem to hamper motor learning.  

8.1.3 Haptic interaction 

The VR training system was enhanced with haptic force feedback to support the 

successful development of angle and force skills. Haptic force feedback allows simulating the 

haptic intrinsic feedback perceived in the real world. This has been demonstrated to be 

profitable for motor learning in VR training (Moody et al., 2001; Wagner et al., 2007) and 

more particularly for the development of force skills (Panait et al., 2009). Moreover, the 

effectiveness of motor skill training in VR has been shown to be closely related to the realism 

of the haptic interaction (Moody et al., 2001; Zhang et al., 2009; De Visser et al., 2011; Zhou 

et al., 2012).  

The haptic interaction suggested in this thesis enables manipulating a virtual precision 

rotary tool, feeling its weight and the contact with hard metallic surfaces (Section 5.2). 

Similar to Morris et al. (2006), the haptic interaction also includes the simulation of the 

operating conditions of the virtual tool in the form of rotary vibrations and a tangential force 
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expressed as a function of the exerted force on the material surface (Section 5.2). Moreover, 

Steinberg et al. (2007) and Rhienmora et al. (2011) have highlighted the effectiveness of 

haptic interfaces to simulate contacts with hard surfaces. Thus, in this thesis, the 

implementation of the suggested haptic interaction is believed to be profitable for the 

development of angle and force skills required in fine grinding and polishing tasks. 

Although the evaluation of the haptic interaction was not the focus of this thesis, 

expert metallurgists provided encouraging comments concerning the haptic sensations of the 

virtual tool as “...it feels like holding the real tool, with vibrations and sounds”. 

8.2 EVALUATION FRAMEWORK 

Two experimental studies have been presented in this thesis. Their purpose was to 

evaluate the effectiveness of the VR training system to support motor learning through part-

task and whole-task training, in order to establish the external validity of the system.  

Two initial hypotheses concerning the validity of the VR training system were 

presented in Chapter 1:  

1. Hypothesis 1: The implementation of fundamental training methods such as 

part-task and whole-task training in the context of VR training, along with the 

provision of augmented feedback, is valid for training the fine motor skills that 

are required in fine grinding and polishing tasks. 

2. Hypothesis 2: The suggested VR training enables transferring the trained 

motor skills to real operating environments.  

8.2.1 Validity of training 

Hypothesis 1 was verified through four experimental hypotheses which were 

addressed by the experimental studies 1 and 2: 

Experimental hypothesis 1: Part-task training is effective in improving the 

trainees proficiency performing angle and force skills with regards to the 

requirements of the target task. 

This hypothesis was addressed throughout both experimental studies. In 

the experimental study 1 presented in chapter 6, performance of angle and 

force skills required in a polishing task resulted to be significantly improved 
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when participants went through part-task training. Novices became thus more 

proficient throughout part-task training enabling their knowledge on angle and 

force skills to progress toward a more advanced stage of motor learning. In 

experimental study 2 presented in chapter 7, this hypothesis was also 

addressed for a fine grinding task. However, despite the study had an 

insufficient  number of participants to allow performing a statistical analysis of 

the results, the pattern of results does seem to indicate that part-task training 

effectively supports motor learning for both tasks.  

Participants from both experimental studies provided positive comments 

such as “User performance is improved compared to the beginning of the 

task” which indicated that part-task training was perceived as an effective way 

of learning, as mentioned in section 8.1.1.1. These results suggest that part-

task training was effective for the development of motor programs that support 

accurate performance of fine motor skills such as angle and force skills 

required in both tasks.   

 

Experimental hypothesis 2: Motor skills trained through part-task training can 

be transferred to the performance of a whole-target task simulated in a virtual 

environment. 

In experimental study 1, it was shown that motor skills trained through 

part-task training can be successfully transferred to the performance of a 

whole polishing task simulated in a virtual environment. Even though, to the 

best of the knowledge of the author, the effectiveness of the suggested part-

task training has not been reported yet through the literature, the capability of 

other types of part-task training to transfer motor skills to the performance of a 

whole-target task in VR has already been highlighted through several research 

studies (Aggarwal et al., 2006; Aggarwal et al., 2009;Nishino et al., 2011). To 

that extent, the effectiveness of the suggested part-task training is consistent 

with that reported in these studies. 

In experimental study 1, results suggest a causal relationship between 

part-task training and effective performance of the polishing task, claiming 

thus for the internal validity of the training. The internal validity refers to the 

principle of cause to effect between the independent variable controlled in the 
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experimental study and experimental outcomes (dependent variables). To that 

extent, the part-task training presented in this thesis was the cause for novice 

trainees to efficiently perform the whole-target task.  

In this thesis, this hypothesis has been verified only in the context of the 

polishing task proposed in experimental study 1. Thus, the internal validity of 

the training was achieved only for that task. However, on the basis of results 

presented in experimental study 2, the internal validity can be also claimed for 

a fine grinding task.  

The transfer of motor skills from part-task training to fine grinding and 

polishing task performance was not investigated in experimental study 2. 

However, motor skills trained through part-task training were subsequently 

applied to whole-task training The trained motor skills were thus transferred to 

the performance of a whole-target task. Quantitative evaluation shows that the 

transfer of the trained motor skills to whole-target task performance was equal 

or even superior in the case of fine grinding when compared to that of 

polishing. Thus, on the basis of outcomes from the experimental study 1, these 

results point out at the internal validity of part-task training for a fine grinding 

task. 

 

Experimental hypothesis 3: Whole-task training leads to a more efficient 

performance of fine grinding and polishing tasks. 

Although the training procedure followed in experimental study 2 was 

shortened in order to adapt to the duration of the demonstration phase of the 

ManuVAR project and the availability of participants, experimental results 

suggest that task performance tended to improve after whole-task training. 

These findings  are consistent with those presented in other research studies 

(Moody et al., 2001; Fried, M. P. et al., 2005; Suebnukarn et al., 2010; Oren et 

al., 2012). However, in this thesis, it is believed that performance 

improvements would have been better after a more intensive whole-task 

training. Indeed much previous research has highlighted how task performance 

is considerably improved through multiple rehersals of VR training (Esen et 

al., 2004; Fried, M. P. et al., 2005; Esen et al., 2008b; Suebnukarn et al., 

2010). 
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Experimental hypothesis 4: VR simulations are realistic representations of 

industrial processes to the extent that the level of expertise in real operating 

environments can be applied to the context of VR training. Thus, the VR 

training system allows discriminating between different levels of expertise.  

In experimental study 2, the performance of non-expert workers during 

the pre-evaluation of whole-task training was compared with that of the two 

expert metallurgists proposed by Tecnatom S.A. Experimental results revealed 

that performance scores derived from the performance of fine grinding and 

polishing tasks were higher for expert metallurgists than for non-expert 

workers. This suggests that the level of expertise acquired in real operating 

environments could be successfully applied to the performance of both tasks in 

whole-task training in VR. Thus, the VR training system is valid for training to 

the extent that it provides a realistic representation of performance outcomes 

for both tasks allowing discriminating between expert and non-expert workers. 

This hypothesis has been therefore verified. 

Many research studies, and not only those which have investigated the 

effectiveness of whole-task training, have made a similar comparison between 

different levels of expertise in order to determine to which degree their VR 

training systems were effective to simulate realistic processes (Alhalabi et al., 

2005; Fried, M. P. et al., 2005; Aggarwal et al., 2006;Morris et al., 2006; 

Aggarwal et al., 2009; Bajka et al., 2009; Kalltröm, 2010; Iwata et al., 2011; 

Rhienmora et al. 2011). This has been commonly referred to as construct 

validity (Morris et al., 2006; Bajka et al., 2009; Kalltröm, 2010; Iwata et al., 

2011).  

Construct validity refers to the degree to which VR simulations reflect 

what has been measured, in this case, task performance of participants in 

whole-task training on the basis of the level of expertise in the real world. 

Experimental results provide evidence of the construct validity of simulations 

to identify expert and non-expert performers based on performance scores. 

These findings are thus in concurrence with those studies which have 

established the construct validity of VR training systems based on whole-task 

practice (Alhalabi et al., 2005; Kalltröm, 2010; Rhienmora et al. 2011). 
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8.2.2 Validity of transfer 

Hypothesis 2 has been verified on the basis of the internal validity of the training 

along with the construct validity of simulations proposed through whole-task training, 

allowing thus to suggest the external validity of the training proposed by the VR training 

system (Figure 76). As described in the introduction of this thesis (Chapter 1), the external 

validity of the system refers to its ability to effectively train motor skills which can be 

transferred to real operating environments. Thus, it is assumed that if the system enables 

training motor skills in a specific context which consists of an accurate representation of the 

reality, the system allows transferring those skills to the real world. 

 

Figure 76. External validity of the VR training based on the internal validity of 

the training and construct validity of simulations proposed throughout whole-task 

training. 

On the one hand, the internal validity of the training is a proof of the effectiveness of 

part-task training to train and transfer motor skills to the performance of a whole-target task 

in VR. However, those motor skills are not equivalent to those performed in real operating 

environments to the extent that suggested part-task training does not allow focusing on task 

performance. For this reason, whole-task training is required in order to enable bringing 

motor skill training closer to reality. On the other hand, the construct validity of simulations 

proposed through whole-task training suggests that the VR training system provides an 

accurate representation of the reality. 

Hence, although the effectiveness of the VR training system to transfer motor skills to 

real operating environments has not been directly explored as in Eid et al. (2007), Sewell et 

al. (2007), Von Sternberg et al. (2007) or Oren et al. (2012), the capability of the system to 
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train and transfer motor skills to a realistic performance of a whole-target task in a virtual 

environment pointed out at the external validity of that system to transfer those motor skills 

to real operating environments. 

In experimental study 2, expert and non-expert participants provided comments which 

enabled exploring qualitatively the external validity of the training to the extent that they 

opined about how the suggested training supported motor learning and how it could improve 

the current training (Appendix F). These comments indicate that the external validity of the 

training is coherent with that evaluated objectively. 

On the one hand, expert metallurgists have highlighted the potential of the VR 

training system to train motor skills commenting that “The potential is very good” , “…it is a 

good way to learn how to perform the steps”, “… good to learn the right angle and force” and 

“…useful to understand some points that we can teach to the students”. On the other hand, 

non-expert workers considered the training to be “…quite useful for learning…” highlighting 

that it enabled the successful development of motor skills as “ It trains you in adapting 

correct angle and force which drives you to the correct behaviour…” and “User performance 

is improved compared to the beginning of the task”. Moreover, non-experts workers were of 

the opinion that the suggested training was “…more accurate…”  “…very precise…”, and 

“…easy to learn...“, when compared to conventional training: “It is more complicated to 

learn in the lab”.  

Furthermore, all participants agreed on the complementary relationship of VR training 

and conventional training mentioning that “…it could be combined with the conventional 

training”, “…both training in VR and real word are complementary”, “ VR training and 

physical training are complementary”, “ It’s good using VR as a complement to real world 

training”, “ VR training is complementary to real world training…” ,”…it would be good to 

combine VR training and real world training” and “After the training received, it might be 

more efficient to combine with the real world training”, to the extent that the suggested 

training allowed to “…cover some points that the traditional training cannot”. Finally, VR 

training was perceived “As an introduction…”, because “…it provides background and 

knowledge to real world training” and “…you can use as a background before the real world 

training” allowing to “…save you some time in the lab”.  

Opinions concerning the capability of the suggested system to train motor skills and 

transfer those skills to conventional training suggest the external validity of the VR training 

system. Moreover, the external validity evaluated subjectively is reinforced with statements 



Chapter 8. Discussion and Conclusion 

207 

 

which indicated the fidelity of simulations proposed throughout whole-task training. 

Effectively as mentioned in section 3.4, a high degree of fidelity is believed to be an 

important factor which supports the transfer of motor skills from virtual to real operational 

environments also known as transfer of training. In experimental study 2, expert and non-

expert workers provided comments which suggested the fidelity of simulations as “...it makes 

you feel that you are performing the real metallographic replica”, “. ..close to the real 

situation you can think that it is like holding the real tool...”, “The environment is very 

good”, “ ...it fits to the reality of the work” and “...very similar to performing the real task”. 

Nonetheless, some of the non-expert workers who performed the fine grinding task also 

commented the lack of fidelity of whole-task training simulations when the colour map was 

withdrawn: “It is annoying when performing the last task, in contrast when you are 

performing in the real world you do have a visual idea about how you are doing”, and “… the 

lack of feedback is annoying because in the real world they can see the metal changing”. 

These comments are encouraging to the extent that they confirm the fidelity of the 

representation of task performance outcome on the colour map. However, in the course of a 

polishing task in real operating environments, performance outcome on the material surface 

is not observable (Section 4.2.2.1). Thus, in the case of a polishing task, the colour map 

provided an additional assistance to the realization of the task, supposedly lessening the 

degree of fidelity of the simulation. Nevertheless, in this thesis, it is believed that lowering 

the degree of fidelity of simulations providing additional assistance is profitable to support 

the transfer of motor skills to real operating environments at early stage of learning. This is 

contrary to those studies which have argued that higher degree of fidelity support higher 

transfer of training (Section 3.4).  

8.3 LIMITATIONS OF THE STUDY 

In this thesis, a VR training system which aimed to support motor learning for fine 

grinding and polishing tasks has been designed and developed (Chapters 4 & 5). The 

effectiveness of training through that system has been explored in chapters 6 and 7. This 

section reviews the limitations in the design, development, and evaluation of the system. 
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8.3.1 Design and development of the VR training system 

The VR training system allowed simulating the performance of fine grinding and 

polishing tasks within virtual environments (Section 5.1.2.3). However, the graphical realism 

of simulations can be questioned (Section 8.3.1.1). Those simulations relied upon an 

interaction model (Section 5.3) which has been heuristically defined by the two expert 

metallurgists from Tecnatom S.A. (Section 5.4). Nonetheless, that model presented some 

incongruence which is discussed here (Section 8.3.1.3).  

Finally, the suggested VR training was enhanced with haptic force feedback which 

allowed interacting within virtual environments. A haptic device enabled manipulating a 

virtual precision rotary tool and allowed emulating the operating conditions of a real tool 

(Section 5.2). However, the realism of the force generated when the tool disc contacted a 

surface assumed a simplification of the haptic paradigm which is also discussed here (Section 

8.3.1.3).   

8.3.1.1 Task simulation 

The lack of graphical realism of VR simulations is one limitation of this work. 

Although graphical realism has not been extensively reported as a critical issue, it was 

commented upon several times in both experimental studies. Two participants from 

experimental study 1 said that that the virtual environment was a “…poor environment” and 

that it could be improved (Appendix E). Similarly, some participants from experimental study 

2 pointed out that the virtual environment was graphically poor, suggesting that ”graphics 

need to evolve to a better quality…” (Appendix F). Moreover, the perception of contact 

through visual cues has been reported to be sometimes confusing:”…it was complicated to 

see where I was touching” and “I had some doubts if I was touching or not touching the 

pipe”.  

Some of the factors that may contribute to a perception of poor graphics quality 

include: poor lighting conditions, absence of shadow cues within the virtual environment and 

the lack of simulation of deformable objects such as the tool disc when being pressed on a 

material surface. Furthermore, the absence of stereoscopic visualization and point of view 

tracking in experimental study 1 (Chapter 6) is believed to lower the realism of virtual 

environments (Deering, 1993).  
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8.3.1.2 Parameterization of the interaction model 

The interaction model encompasses the model of contact of the tool disc on the 

material surface along with the ranges for angle and force skills specific to fine grinding and 

polishing tasks. The parameterization of the model has followed a heuristic methodology 

(Section 5.4). The resulting interaction model was subjective and therefore questionable.   

The model of contact of the tool disc on the material surface has been determined in 

the form of a ratio on the basis of measurements performed on a series of images. Each image 

showed the tool disc contacting with the material surface when specific angle and force were 

applied on the tool (Section 5.4.1). The measurements consisted of visually estimating the 

ratio of the diameter of the tool disc in contact with the material surface. Thus, a degree of 

uncertainty in measurements can be logically assumed. Moreover, the exactitude of exerted 

forces and applied angles announced by expert metallurgists for each image is relative. 

Applied angles were approximated. Similarly, expert metallurgists supposedly exerted 

controlled forces on the tool, but those forces were not measured. Thus, the accuracy of 

exerted forces could not be guaranteed. This could be a possible explanation for a noticeable 

incongruence of the model of contact when the exerted force was supposedly close to the 

permitted maximum exertable force and the inclination of the tool about 10º (Section 5.4.1).  

The definition of ranges for motor skills was performed throughout a unique trial 

session during which angle and force data related to the performance of fine grinding and 

polishing tasks were collected (Section 5.4.2). During this trial session, expert metallurgists 

were required to operate on a specific surface with a virtual precision rotary tool controlled in 

position and orientation by a Phantom Desktop haptic device (Appendix A).  

The process followed for the definition of ranges for both skills can be considered as a 

limitation of the research study in the extend that:  

1. One of the experimental studies (Chapter 6) was conducted using a different 

haptic device through which haptic sensations were most probably perceived 

distinctly (Section 8.3.2.2). 

2. The surfaces on which the evaluation of the VR training system was carried 

out (Chapters 6 & 7), were oriented differently compared to that of the trial 

session. Thus, angle and force data collected during the trial session could be 

argued to be specific to that case. 
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8.3.1.3 Haptic interaction 

Realistic simulation of forces resulting from the contact of the virtual tool on the 

material surface is complex. In the real world, the tool disc contacts the material surface in 

multiple points. However, in the simulations, that contact was rather different. The haptic 

interfaces employed in this study consisted of punctual inter-actuators (Appendix A). The 

contact model proposed by default by the manufacturer consists of a one point-based contact. 

Therefore, contact was only perceived in a point located in the centre of the tool disc.  

Such contact was considered to be sufficient to train angle and force skills. 

Nonetheless, there was a discrepancy between what could be seen and what could be felt. 

Effectively, although the tool disc collided with the material surface, contact could not be felt 

until half of the disc had penetrated the material surface. Thus, the collision of a point located 

at the edge of the disc with the material surface did not generate any haptic response.  

Visualization and haptics are considered to be very important components of VR 

simulations as each of these cues complements each other (Steinberg et al., 2007). The 

discrepancy between visual and haptic cues has been reported as a lack of realism of the 

haptic interaction in experimental study 1. Several participants reported that “It was hard to 

see why I did not touch the pipe/ make contact with it, especially as it felt I was touching it” 

suggesting that the contact of the tool disc on the material surface was somehow confusing 

(Appendix E). Nonetheless, most of those participants were not familiarized to the haptic 

interaction. Similar comments have been made in experimental study 2: “…it was 

complicated to see where I was touching” and “I had some doubts if I was touching or not 

touching the pipe” (Appendix F). 

8.3.2 Evaluation of the VR training system 

The validity of a VR training system has been verified through two experimental 

studies in which the effectiveness of a training program to support motor learning has been 

evaluated (Chapters 6 & 7).  

This thesis has proposed a training toolkit which enables building training programs. 

However, the effectiveness of a single training program has been tested and findings have 

been generalized to the VR training system.  

This section proposes a critical analysis of the experimental studies presented in this 

thesis and points out at the limitations of experimental methods.  
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8.3.2.1 Participants Sampling 

One limitation for both experimental studies was the sampling of participants. In 

experimental study 1, an a-priory G-power analysis for ANOVA designs (Faul et al., 2007) 

has predicted a minimum sample size of 30 participants (using α = 0.05 as a standard of 

accuracy). All participants were staff and students at the University of Nottingham. They were 

all recruited on the basis of their availability and willingness at the time of the study. This 

sampling method consists of convenience sampling, a non probability sampling technique 

(Gravetter & Forzano, 2011). Convenience sampling is probably used more than any other 

sampling methods because it consists of an easier, non-expensive and quick sampling 

process. However, convenience sampling is usually considered as a weak form of sampling 

as it does not guarantee the representativeness of the sample. In the experimental study 2, 

participants were few technical workers and the two expert metallurgists proposed by 

Tecnatom S.A. The small amount of participants was critical as it did not enable conducting a 

statistical analysis of experimental data (Section 8.3.2.1). Such few participants could be 

argued to be unrepresentative of the metallurgist worker population.   

8.3.2.2 Experimental setup 

The distinct experimental setups which have been used in both experimental studies 

could be a limitation to the conclusion drawn for the validity of the VR training system.  

First, visualization setups were different in experimental studies 1 and 2. In 

experimental study 1, simulations could only be visualized monoscopically and participants’ 

point of view was not tracked. This last point has been reported as an issue by one of the 

participants of the study: “...the angle of view onto the display when standing was not good”. 

In contrast, in the experimental study 2, participants could visualize virtual environments 

stereoscopically with their point of view being tracked.  

Secondly, as mentioned in section 8.3.1.2, different haptic interfaces were employed 

throughout this work. Force effects specific to the haptic interaction proposed by the VR 

training system such as the weight of the virtual precision rotary tool, effects of contact, 

rotary vibrations and tangential forces (Section 5.2) were configured by the two expert 

metallurgists of Tecnatom S.A. with a Phantom Desktop haptic device. In experimental study 

2 (Chapter 7), the haptic device was similar to that employed by the two expert metallurgists 

for the configuration of force effects. Therefore, force effects could be perceived as they were 

configured. However, in experimental study 1 (Chapter 6), a different haptic device was 
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employed: a Phantom Omni which was the only device available at the study site. The 

Phantom Omni haptic device is not as advanced and accurate as the Phantom Desktop device 

(Appendix A). Thus, force effects may have been perceived differently when compared with 

those defined by the expert metallurgists. Moreover, the effect of VR training on force skills 

could be argued to be limited by the technical capability of the Phantom Omni haptic device 

to render high forces (Appendix A). 

8.3.2.3 Experimental design 

In this research, fine motor skills have been practised in order to support motor 

learning. Those skills also aimed to be transferred to the performance of a whole-target task 

simulated in a virtual environment and to real operating environments. A first limitation of 

experimental designs was that motor learning was immediately assessed after VR training. 

Thus, it could be argued that experimental studies only demonstrated the effectiveness of the 

VR training system to support short-term motor learning. Different training procedures would 

have been required to investigate long-term motor learning (Yang et al., 2008).  

 Other limitations consist of the training designs suggested in both experimental 

studies. In experimental study 1, part-task training has been designed according to outcomes 

of a pilot study which involved few participants. Nonetheless, the representativeness of those 

participants could be discussed to the extent that some of the participants of experimental 

study 1 who received part-task training questioned the resulting training design and suggested 

alternative design features such as “…training longer time, training sessions of 15sec were 

too short” and “....to improve upon accuracy, there could have been smaller session after 

each task to focus on improving small things such as maintaining the correct force or how to 

improve on keeping the angle constant”. Moreover, several participants reported fatigue after 

completing part-task training. These findings suggested that the part-task training design was 

not optimal. However, it was sufficient to demonstrate the principles underlying to the 

suggested training.  

Moreover, the scheduling of the concurrent augmented feedback throughout part-task 

training could also be considered to be weak when compared to that proposed in other 

research studies (Rodriguez et al., 2010).  

In experimental study 2, training procedures proposed for part-task and whole-task 

training were limited by the availability of the participants and the duration of the 

demonstration phase of the ManuVAR project (Appendix C). Both types of training were 
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therefore drastically shortened to a few rehearsals. On the one hand, part-task training led to 

satisfactory results. On the other hand, the amount of whole-task training was apparently not 

sufficient to support meaningful improvements in the performance of fine grinding and 

polishing tasks. However, it was sufficient for the evaluation of the construct validity of 

simulations.  

Concurrent augmented feedback has shown to be positive for motor skill training. 

However, the effectiveness of the method of provision of that augmented feedback during 

whole-task training can be discussed. For instance, Rodriguez et al., (2010) highlighted that 

augmented feedback was more effective when provided automatically as a function of 

trainee’s performance.  

Moreover, the colour map adapted to colour blind people (Section 5.1.2.2) was not 

implemented at that time. So, the colour blind participant was provided the default colour 

map. This is controversial to the extent that the participant was not able to distinguish a 

specific range of colour.  

Another limitation was that the effectiveness of the VR training system to transfer 

motor skills to a real operating environment could not be directly explored but was rather 

suggested through the internal validity of the training and the construct validity of whole-task 

training simulations. The lack of technical resources impeded to evaluate transfer of training 

in a real operating environment.  

8.3.2.4 Data analysis 

In the experimental study 2 (chapter 7), the collected quantitative data could not be 

statistically analyzed because of the limited number of participants involved in the study 

(Section 8.3.2.1).  

8.4 RECOMMENDATIONS FOR FUTURE STUDIES 

More developments are needed to improve the VR training system in order to support 

motor learning (Section 8.4.1). In addition, more studies are required in order to further 

investigate the development of fine motor skills for the performance of fine grinding and 

polishing tasks and the transfer of those skills to real operating environments (Section 8.4.2).  
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8.4.1 Recommendations for further developments 

Further implementations in the VR training system should focus on improving the 

realism of simulations. The realism of virtual environments could result strongly enhanced by 

more realistic audio cues, for example by using binaural sounds (Katz & Picinali, 2011), 

improved graphical realism including lighting conditions along with object shadow casted on 

surfaces (Nikolic, 2007) and the representation of object deformation such as that of the tool 

disc when being pressed on the material surface.  

However, the optimization of interaction model must be considered as a priority. The 

model of contact of the tool disc on the material surface needs to be more accurately defined 

in order to enable even more realistic simulations. During the definition of the model of 

contact, applied angle and exerted force must be accurately controlled. For instance, the 

exerted force could be measured with a force sensor as in Sewell et al. (2007), in order to be 

adjusted at the correct value before image capture.  

The haptic interaction needs to be investigated more in depth. The contact of the tool 

disc with a material surface could be improved. It should not be limited to a unique point. As 

in real task performance, performers should be able to perceive contact through the whole 

surface of the tool disc. A virtual disc which simulates the tool disc could be used as haptic 

cursor instead of the default contact point. To do so, the development of the haptic interaction 

will most probably require migrating completely towards low level programmable interfaces 

such as HDAPI (http://www.sensable.com).  

8.4.2 Recommendations for further research 

Further research aiming to investigate the validity of the VR training system should 

consider a larger sample of participants with similar characteristics as those involved in 

experimental study 2. The participants should be a sample of the technical worker population 

able to perform the metallographic replica technique. Furthermore, participants could be 

distributed into several sub-groups as a function of their level of expertise. Thereby, the 

effectiveness of the VR training system to support motor learning could be tested at several 

stages of learning so the construct validity of the whole system could be more clearly 

established. Many research studies have investigated the capability of VR training systems to 

make the distinction between several levels of expertise (Fried, M. P. et al., 2005; Wagner et 

al., 2007; Aggarwal et al., 2009; Iwata et al., 2011).  The most appropriate sampling 
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technique corresponding to the proposed model would consist in a stratified sampling 

technique (Gravetter & Forzano, 2011).  However, gathering a population of technical 

workers of various levels of expertise from which a large sample of participants could be 

extracted may be hard to achieve. Therefore, future studies could maintain similar sampling 

techniques as those employed in this work, but must attempt to increase participants sample 

size in order to proceed to statistical analysis of experimental data.  

Further experimental studies should also avoid the limitations of experimental designs 

presented in this discussion (Section 8.3.2.3) in order to better establish the validity of the VR 

training system. A preliminary study should be carried out to explore most appropriate 

designs for part-task and whole-task training. Moreover, the scheduling of augmented 

feedback must be investigated in order to optimize the development of accurate motor 

programs through both training methods. Furthermore, the findings of a preliminary study 

would consist of a useful guideline for the design of effective training programs.  

Further experimental studies should investigate the validity of the VR training system 

to support short-term and long-term learning by proposing different training procedures 

similar to those suggested by Mononen, 2007 and Yang et al., 2008. As well, transfer of 

training from virtual to real operating environments could be attempted to be quantified 

following the method proposed by Roscoe & Williges (1980). However, to do so, task 

performance should be objectively assessed in real operating environments.  

8.5 SUMMARY 

This thesis has presented and evaluated a VR training system which aimed to train a 

set of fine motor skills that are required in the fine grinding and polishing tasks carried out 

during the metallographic replica technique. Two experimental studies have been performed 

in order to investigate whether the VR training system is valid for training motor skills in the 

suggested context and transferring those skills to real operating environments. 

The validity of the VR training system to train motor skills has been established on 

the basis of the internal and the construct validity of the system. On the one hand, the internal 

validity of the system has been achieved showing the capability of the system to enable the 

successful development of the trained motor skills throughout part-task training procedure 

and to transfer those skills to the performance of a whole-target task in a virtual environment. 

On the other hand, the construct validity of the system has been highlighted demonstrating 
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that the system is able to provide an accurate representation of the reality through whole-task 

training, enabling thus discriminating between several levels of expertise. 

The external validity of the VR training system to support transfer of training has 

been established on the basis of the internal and the construct validity of the system and 

strengthened by the analysis of subjective data collected throughout both experimental 

studies.  

Although the suggested VR training system has shown to be effective for training the 

fine motor skills that are required in the performance of fine grinding and polishing tasks, 

more developments and investigation are needed in order to improve the functionalities of the 

system and quantify transfer of training. 
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Appendix A. Technical  

Specifications of Haptic Devices 

Haptic technology enables real-time three-dimensional proprioceptive interaction 

within virtual environments (McLaughlin et al., 2002). Haptic interaction relies on force 

sensory information provided by a haptic device, which contributes in enhancing the way 

users interact within virtual environments (Mark et al., 1996).  

In the research presented in this thesis, two haptic interfaces from the Phantom 

product line (Massie & Salisbury, 1994) of Sensable Technologies 

(http://www.sensable.com/) have been employed: the Phantom Desktop and Omni which are 

two affordable solutions for the haptic interaction in virtual environments (Figure 77). The 

Phantom devices consist of punctual inter-actuators which in their default version use a stylus 

handle attached to an end-effector (Hayward et al., 2004). These interfaces are impedance 

devices (Hannaford & Okamura, 2008) which sense the position of the end effector 

controlled by the operator on 6 DOF input and generate forces in order to constraint the 

motion on 3DOF output. The Phantom Desktop is more accurate and can render higher forces 

than the Phantom Omni.  

Table 19 provides a comparison of the technical specificities of both haptic devices.  
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Figure 77. (a) Phantom Desktop device and (b) Phantom Omni device from 

Sensable Technologies. 

Sensable Technologies also proposes software solutions for haptic interaction such as 

the Software Development Kit (SDK) OpenHaptics® toolkit.   

The OpenHaptics® Toolkit (currently at the version 3.0) has been used for the 

implementation of the haptic interaction presented in this thesis. It consists of a C++/Open 

GL-based library which supports the haptic rendering through multi-thread programming. 

Basically, the OpenHaptics Toolkit enables executing at high frequency the sensing of the 

position of the end effector of the haptic device used to calculate the generated forces. Such 

execution runs on a servo loop thread at a minimum of ∼1 KHz. 

  The OpenHaptics® Toolkit presents a three-layer architecture: Haptic Device API 

(HDAPI), High Level API (HLAPI) and QuickHaptics API. The implementation of the 

suggested haptic interaction consists of HDAPI and HLAPI-based programming which 

provides low-level and high-level access to the haptic device driver. The HDAPI enables 

direct rendering of forces effects and allows the implementation of customized force effect 

such as those to simulate the operating conditions of the portable power tool (Section 5.2). 

The HLAPI is built upon HDAPI. It offers several commands to setup the rendering of 

common force effects such as stiffness, damping, friction, dynamic friction, viscosity and 

many more. Moreover, HLAPI provides three pre-implemented threads: The client thread 

(∼30 Hz) which supports the rendering of haptic objects; the collision thread (∼100 Hz) 

which supports the collision detection and the servo loop thread (∼1 KHz) which handles the 

sensing of the position of the haptic device and enables rendering force effects. 
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Table 19. Technical specifications of Phantom Desktop and Omni devices.  

Model PHANTOM Desktop 

Device 

PHANTOM Omni Device 

Force feedback workspace > 160 W x 120 H x 120 D 

mm 

> 160 W x 120 H x 70 D 

mm 

Range of motion Hand movement pivoting at wrist Hand movement 

pivoting at wrist 

Nominal position resolution > 1100 dpi > 450 dpi 

 ~ 0.023 mm ~ 0.055 mm 

Backdrive friction < 0.23 oz (0.06 N)  < 1 oz (0.26 N) 

Maximum exertable force at nominal 

(orthogonal arms) position 

1.8 lbf. (7.9 N) 0.75 lbf. (3.3 N) 

Continuous exertable force (24 hrs.) 0.4 lbf. (1.75 N)  > 0.2 lbf. (0.88 N) 

Stiffness X axis > 10.8 lb/in (1.86 

N/mm) 

X axis > 7.3 lb/in (1.26 

N/mm) 

Y axis > 13.6 lb/in (2.35 

N/mm) 

Y axis > 13.4 lb/in (2.31 

N/mm) 

Z axis > 8.6 lb/in (1.48 

N/mm) 

Z axis > 5.9 lb/in (1.02 

N/mm) 

Inertia (apparent mass at tip) ~ 0.101 lbm. (45 g)  ~ 0.101 lbm. (45 g) 

Force feedback x, y, z  

Position sensing x, y, z (digital encoders) 

[Stylus gimbal] [Pitch, roll, yaw (± 3% linearity potentiometers)] 

Interface Parallel port and FireWire® 

option 

IEEE-1394 FireWire® port 

Supported platforms Intel or AMD-based PCs Intel or AMD-based PCs 

Application Programming Interface OpenHaptics® Toolkit  

Source: http://www.sensable.com/documents/documents/STI_Jan2009_DesktopOmniComparison_print.pdf. 
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Appendix B. 

Visualization and Tracking Technology 

In the specific case of manipulation in virtual environments, the perception of depth is 

a decisive factor. This section aims to provide background knowledge to the reader 

concerning visualization mechanisms that support the perception of depth (Section B.1) and 

display technologies used in the experimental study 2 (Chapter 7) which enabled perceiving 

depth in virtual environments (Section B.2). 

B.1  PERCEPTION OF DEPTH 

The perception of depth in virtual environments results from the computation of a 

series of information cues by the human visual system which enables building a three-

dimensional mental model of the virtual scene. Some of these cues provide binocular and 

oculomotor (Section B.1.1), and motion parallax-related information (Section B.1.2) which 

are respectively supplied through stereoscopic display (Section B.2.1) and point of view 

tracking (Section B.2.2). 
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B.1.1 Binocular & oculomotor cues 

The human visual system is able to perform complex tasks such as simultaneously 

processing two visual stimuli received from both eyes and generating a three-dimensional 

mental model. This mechanism is known as stereopsis and it refers to the visual system 

capacity of computing coherently two monocular signals in order to create a three-

dimensional representation of an environment. Stereopsis has demonstrated to plays an 

important role in the perception of depth in the near and mid-fields (Nagata, 1993) as in 

virtual environments (Poyade et al., 2009). 

Stereopsis depends on binocular and oculomotor depth cues (Pfautz. 2002). Binocular 

depth cues refer to the depth sensation perceived by means of the processing of the slightly 

different retinal images of both eyes, resulting from the human eyes horizontal separation. It 

is commonly assumed that human eyes separation known as the average interocular distance 

is about 6,3cm (Dodgson, 2004). Oculomotor depth cues comprise the sight accommodation 

and convergence processes (Pfautz. 2002).  

In stereoscopically displayed virtual environments, binocular depth cues are supplied 

by providing to each eye, its corresponding point of view. Eyes accommodation in 

oculomotor depth cues is usually neglected (Pfautz. 2002) and convergence is naturally 

performed at the viewing distance. Figure 78 shows how depth is perceived in virtual 

environments on the basis of the mechanisms encompassed in the stereopsis. 

 

 

Figure 78. Perceived depth in front of and behind the display panel as a function 

of the representation of binocular cues and eyes convergence. 
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B.1.2 Motion parallax cues 

Motion parallax cues provide depth information obtained from the relative 

displacement between objects located at different depth, subsequently to movements of the 

point of observation (Wanger et al., 1992).  

B.2 DISPLAY TECHNOLOGIES 

In experimental study 2, virtual environments were displayed stereoscopically and the 

point of view of participants was tracked which enabled providing additional depth 

information. 

B.2.1 Stereoscopic display 

Many research studies have demonstrated the advantages of using stereoscopic 

visualization in virtual environments (Kim et al. 1987; Rosenberg. 1993; Bouguila et al. 

2000; Alexander et al. 2003). Stereoscopy provides a noteworthy improvement of depth 

perception in a very realistic way (Holliman. 2006), intensifying perception of surfaces and 

materials (Pfautz. 2002), but also, facilitating spatial localization and navigation. 

Stereoscopic visualization has shown to enhance accuracy throughout manipulation tasks in 

virtual environments (Kim et al. 1987). 

Binocular depth cues (Section B.1.1) were supplied by a polarized 3D system 

composed of two projectors which superposed the two stereopsis viewpoints on the screen 

through circular polarization filters of opposite dextrorotation15.  

Virtual environments could be visualized through a pair of glasses equipped with 

circular polarized filters mounted in reverse. Each glasses crystal enabled filtering light with 

a particular type of circular polarization: clock-wise or anti-clock-wise (Figure 79). Such 

polarization allows head inclination without disturbing the perception of the virtual 

environment. 

                                                 
15 Definition from Merriam-Webster (http://www.merriam-webster.com):  

dextrorotation: right-handed or clockwise rotation-used of the plane of polarization of light  
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Figure 79. Polarization of light on each glass crystal. 

B.2.2 Point of view tracking 

The tracking of the point of view enables providing addition depth cues through 

motion parallax-related information (Section B.1.2). The tracking of participants point of 

view in the experimental study 2 (Chapter 7) was supported by the Optitrack Tracking Tool 

from Natural Point (http://www.naturalpoint.com). Optitrack Tracking Tool consists of a 

software package which enables tracking infrared light reflective markers in position and 

orientation on 6 DOF. Tracking of a marker is performed with set of infrared light emitted 

cameras that are synchronized between each other (Figure 80).  

 

Figure 80. Example of tracking of a marker using two IR light emitted cameras 

Cameras are arranged so their viewing frustum overlaps and define a capture volume 

within the tracked area (Figures 81 & 82). In the experimental study 2 (Chapter 7), 6 

Optitrack V100:R2 tracking cameras were employed for tracking the point the view of the 

performer. Technical specifications of the Optitrack V100:R2 Camera can be found at the 

manufacturer website (http://www.naturalpoint.com/optitrack/products/v100-r2/specs.html). 
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By default, the Optitrack V100:R2 is equipped with a lens which has a horizontal angle of 

view about 46º. Figure 82 presents a possible arrangement of cameras around the tracked 

area. 

 

 

Figure 81. Volume capture composed by 4 cameras 

(http://www.naturalpoint.com).  

 

Figure 82. An Optitrack V100:R2 Camera in a 12 camera setup mounted on 

stands (http://www.naturalpoint.com). 
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In the experimental study 2 (Chapter 7), four infrared light reflective markers were 

clustered on a pair of passive stereoscopic glasses (Section B.2.1) in order to form a unique 

set of markers that was recognized by the system (Figure 83). 

 

Figure 83. Passive stereoscopic glasses equipped with a set of infrared light 

reflective markers that form a unique rigid body for the tracking of the point of 

view. 

The Optitrack Tracking Tool enables streaming tracking data in real-time over a 

network in order to be used in other applications such as a VR visualization interface, for 

instance the 3DVia Virtools 5.0 VR Player. Tracking data streaming is ensured by the 

industry standard Virtual-Reality Peripheral Network (VRPN) which consists of a set of 

classes that define a server/client architecture which provides a network-transparent interface 

between applications and VR interfaces such as tracking devices (Taylor II et al., 2001).  

In the experimental study 2 (Chapter 7), the Optitrack Tracking Tool provides a 

VRPN server which enabled streaming tracking data in real-time to the 3DVia Virtools 5.0 

VR Player. A VRPN client for tracking service is implemented by default in the 3DVia 

Virtools platform. Thus, the viewing camera in virtual environments proposed in the study 

could be updated according to the participant’s point of view. 
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Appendix C. ManuVAR 

C.1  THE MANUVAR PROJECT 

ManuVAR (Manual work support throughout system lifecycle by exploiting Virtual 

and Augmented Reality) is a Seventh Framework European project that ran from 2009 

through 2012 and involved 18 partners across 8 countries (http://www.manuvar.eu/). 

ManuVAR aimed to demonstrate that virtual and augmented reality technology (VR/AR) to 

support high value high knowledge manual work throughout the product lifecycle is an 

opportunity to improve the competitiveness of EU industries (Krassi et al., 2010a, Krassi et 

al., 2010b, Krassi et al., 2010c). ManuVAR proposed the development of an innovative 

technological and methodological framework which aimed to support high value high 

knowledge manual work throughout the whole product lifecycle.  

Five working groups (clusters), in which a strong collaboration between industrial and 

research partners was established, have consolidated several industrial use cases for which 

high value high knowledge manual work-related issues needed to be resolved. These 

industrial use cases presented a homogeneous distribution across the product lifecycle (Figure 

84) in various fields of activity such as:  
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1. Cluster 1: Satellite assembly 

aerospace component assembly clean rooms.

2. Cluster 2: Assembly line and 

VR systems for improving assembly lines in SMEs.

3. Cluster 3: Remote maintenance 

maintenance support in the railway sector.

4. Cluster 4: Power plants 

improving training on nondestructive 

5. Cluster 5: Heavy machinery 

maintenance. 

Figure 84. Distribution of industrial cases across the ManuVAR product lifecycle 

management model (PLM) with the product lifecycle located on the external 

layer (Courtesy of ManuVAR consortium

Several industrial use cases were prioritized in order to define a sample of cases to be 

implemented which demonstrated that the ManuVAR platform can effectively 

manual work across the product life cycle. 

priority for each cluster are detailed

Motor Skill Training using Virtual Reality and Haptic Interaction - A case study in industrial maintenance

Cluster 1: Satellite assembly - VR/AR assisted procedure compliance in 

aerospace component assembly clean rooms. 

Cluster 2: Assembly line and Small and Medium Enterprise (

VR systems for improving assembly lines in SMEs. 

Cluster 3: Remote maintenance - VR/AR-enhanced remote on

maintenance support in the railway sector. 

Cluster 4: Power plants - The Metallographic Replica: Use of VR for 

improving training on nondestructive inspection technique. 

Cluster 5: Heavy machinery - VR/AR in large machine assembly and 

. Distribution of industrial cases across the ManuVAR product lifecycle 

management model (PLM) with the product lifecycle located on the external 

ManuVAR consortium).  

industrial use cases were prioritized in order to define a sample of cases to be 

implemented which demonstrated that the ManuVAR platform can effectively 

manual work across the product life cycle. Those industrial use cases with higher degree of 

detailed below: 

study in industrial maintenance 

R assisted procedure compliance in 

Small and Medium Enterprise (SME) - Low cost 

enhanced remote online 

The Metallographic Replica: Use of VR for 

 

VR/AR in large machine assembly and 

 

. Distribution of industrial cases across the ManuVAR product lifecycle 

management model (PLM) with the product lifecycle located on the external 

industrial use cases were prioritized in order to define a sample of cases to be 

implemented which demonstrated that the ManuVAR platform can effectively support 

Those industrial use cases with higher degree of 
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1. Cluster 1: VR application for off line integration and testing.  

2. Cluster 2: MR design and testing of existing or virtual production processes  

3. Cluster 3: AR Remote Support/Maintenance  and video-based information. 

4. Cluster 4: VR metallographic replica trainer.  

5. Cluster 5: VR assembly sequence review with ergonomic analysis. 

The work presented in this thesis supports the industrial use case “VR metallographic 

replica trainer” (Figure 84) which was consolidated by the cluster 4 composed of Tecnatom 

S.A. and University of Malaga in collaboration with the Association for the Advancement of 

Radical Behavior Analysis (AARBA) and the Human Factors Research Group from the 

University of Nottingham. This industrial use case pointed out at the limitations of the 

conventional training of the metallographic replica technique. It aimed among other things, at 

the implementation of motor skill training on the ManuVAR platform for fine grinding and 

polishing tasks in order to enable solving transfer and assessment issues of the conventional 

training.  

C.2 THE MANUVAR ARCHITECTURE 

The architecture of the ManuVAR platform is modular. It proposes a set of generic 

components organized in a series of layers (Figure 84). The first component is the Virtual 

Model (VM) which is considered as the core of the ManuVAR architecture. The VM 

provides semantic references of information stored in one or various PLM repositories 

(Figure 85). It enables linking all actors (workers, tools, products) to a semantic aggregation 

of information in the form of models, processes, and simulations that describe the system in 

evolution throughout the product lifecycle (Krassi et al., 2010c).  

The second component is the Application Tool (AT) which gathers a set of elements 

which consist of interchangeable methodological and technological solutions and provides 

specifically designed services in order to solve high value high knowledge manual work-

related issues in one or several industrial use cases (Figure 85). AT orchestrates the 

communications between all technological components connected to the ManuVAR platform. 

AT accesses to the VM with a set of application independent functions provided by the 

access layer (Krassi et al., 2010b, Krassi et al., 2010c).  

Throughout the ManuVAR project, six ATs were developed. Four ATs provided 

dedicated services to the high value high knowledge manual work presented in prioritized 
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industrial uses (Section C.1) whereas two others support ManuVAR platform management-

related services. These ATs are detailed below: 

1. Delivery of work instructions - (real-time) On-site support of 

integration/assembly and/or maintenance which aims to improve high value 

high knowledge manual work by providing support to workers based on 

instructional techniques in virtual environment models, and remote 

communication between operators and experts expert.   

2. Ergonomics evaluation: (real-time) - Ergonomics analysis and workplace 

design which aims to improve workplace design giving emphasis to 

ergonomic issues to which operators may be confronted.  

3. Task planning and analysis - aims to improve working procedure description, 

design and validation using virtual or mixed reality environments. 

4. Training - Training and performance evaluation which aims to improve high 

value high knowledge manual work proposing procedural and motor skill 

training based on performance evaluation and appropriate information 

feedback to the user(s).  

5. VM database editing tool which supports the offline editing of the VM.  

6. Platform services which is part of each instance of the ManuVAR platform 

and supports the User Specific Logic (USL) which consists of platform 

management-related services such as authentication procedure and 

accessibility to information referenced in the VM. 

A third component of the ManuVAR architecture is the User Specific logic (USL) 

which performs a series of service operations that enable the use of the ManuVAR 

components to support high value high knowledge manual work in a specific industrial use 

case. Service operations consist of: 

1. User authentication management. 

2. Management of ATs for a specific industrial use case (one or several ATs can 

be required).  

3. Management of the workflow for the specific user activity. The USL offers a 

Graphical User Interface (GUI) which enables a user to interact with the 

system components.  
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Figure 85. The ManuVAR components for a specific industrial use case 

(Courtesy of ManuVAR consortium). 

C.3 APPLICATION TOOL - TRAINING  

The work presented in this thesis has required the implementation of motor skill 

training on the ManuVAR platform. The AT providing training and performance evaluation 

services has been employed in order to provide a technological and methodological solutions 

to the issues that arise throughout the training of the metallographic replica technique 

traditionally carried out. As mentioned previously, that AT proposes a set of technological 

and methodological elements which enable procedural training on the metallographic replica 

technique and motor skill training on fine grinding and polishing tasks (Table 20). 
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Table 20. Methodological and technological elements proposed by the AT in 

order to support procedural and motor skill training in the context of the 

metallographic replica technique. 

Procedural training 

Methods  Technologies 
Precision Teaching  Visualization element (version 2D) 

 Lesson Runner (including Performance Analyzer) 
Motor skill training 

Methods  Technologies 
Part-task training  Visualization element (version 3D) 

 Lesson Runner (including Performance Analyzer) 
 Haptic server 

Whole-task training  Visualization element (version 3D) 
 Lesson Runner (including Performance Analyzer) 
 Haptic server 

 

The effectiveness of the suggested procedural and motor skill training is based on 

performance evaluation and the provision of feedback to the user(s). The AT performs 

mathematical calculations to support performance evaluation throughout both procedural and 

motor skill training (Sections C.3.1 & C.3.2), and handles communication between 

technological components (Section C.3.3). 

C.3.1  Procedural training 

Procedural training is based on the Precision Teaching which consists of “basing 

educational decisions on changes in continuous self-monitored performance frequencies 

displayed on standard celeration charts” (Lindsley, 1992). Procedural training is performed 

through a 2D Graphical User Interface (GUI) displayed by the visualization element (Figure 

86).  
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Figure 86.The GUI for the procedural training in the ManuVAR platform (the 

trainee is required to click on the picture which shows the tool and the abrasive 

accessory required to remove the oxide scale during a rough grinding task).   

A training session is composed of a set of training items. In each item, the trainee is 

given a limit of time to answer a multiple choice question by selecting the most plausible 

pictorial response or by writing it. Questions can be related to the performance of one of the 

steps of the metallographic replica technique, performance outcome evaluation and material 

surface preparation. The elapsed time during a training item is indicated by a progression bar 

located on the right side of the GUI (Figure 86). 

After the completion of each item, augmented feedback in the form of terminal 

Knowledge of results (KR) (Section 2.4.2) is provided in order to inform the trainee about the 

correctness of the answer. Moreover, the instructor can monitor the performance of a trainee 

over the time through the performance analyzer, a module embedded in the Lesson Runner 

Application (Section C.3.3.1). This module shows a chart which displays the behaviour 

fluency (i.e., performance and frequency of training sessions calculated as right answers per 

minute) (Poyade et al., 2011).  

C.3.2 Motor skill training 

The AT supports motor skill training through two fundamental methods: part-task and 

whole task training (Chapter 5). Part-task training focuses on the development of angle and 

force skills whereas whole-task training enables exercising the performance of whole fine 
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grinding and polishing tasks. This thesis explores the effectiveness of those training methods 

to support motor learning through two experimental studies (Chapters 6 & 7).  

Both training methods are implemented in 3D virtual environments which can be 

displayed monoscopically and stereoscopically by the visualization element (Section 

C.3.3.3). Moreover, the point of view of the trainee can be tracked by using optical tracking 

technology in order to provide additional depth cues (Appendix B). Motor skill training is 

carried out through a haptic device which enables simulating the operating conditions of a 

real precision rotary tool (Section 5.2). The angle and force being exerted are sensed by a 

haptic server specifically designed for the ManuVAR platform (Section C.3.3.2) in order to 

enable the AT to perform the mathematical calculations which support performance 

evaluation. Performance evaluation outcomes can be displayed through concurrent and 

terminal augmented feedback (Sections 5.1.1.2  & 5.1.2.2). 

C.3.2.1 Part-task training  

As explained in chapter 5, part-task training enables fractioning the performance of 

fine grinding or polishing into several part-task components which can be practiced 

separately and jointly throughout a series of training items. While the trainee goes through a 

training item, the AT computes the status of the achievement of the item goal on the basis of 

the accuracy of the trained skill(s). After the completion of an item, the AT estimates how 

well the task has been performed and terminal augmented feedback can be provided on this 

basis. Moreover, as in the procedural training, the instructor can monitor the performance of 

part-training of a trainee over the time through the performance analyzer (Section C.3.3.1).  

C.3.2.2 Whole-Task Training 

Whole-task training consists of a holistic approach of fine grinding and polishing 

tasks. The trainee has to perform the trained task as in the real world. After the completion of 

the task, the AT computes performance outcomes at every single point on the metallographic 

replica area enabling the performance analyzer (Section C.3.3.1) to provide a final score 

stating for the degree of completeness of the task.  
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C.3.3 Technological elements for motor skill training 

C.3.3.1 Lesson Runner and Performance Analyzer 

The Lesson Runner is an application which enables loading a training lesson, a XML 

template-based file. Each lesson is composed of a series of items that define the content of 

training items in procedural and motor skill training.  

The performance analyzer is a module embedded in the Lesson Runner. As said 

previously, it shows a final chart which displays the accuracy of a trainee to complete 

procedural and motor skill training items once the training is complete (Poyade et al., 2011). 

The chart enables comparing the trainee´s performance outcomes over the time. For the 

procedural training, performance outcome is presented in the form of right answers per 

minute whereas for motor skill training, it is expressed as a performance score which 

indicates the ratio of completion of training items. 

C.3.3.2 Haptic Server 

The haptic server supports the haptic interaction within virtual environments, through 

a haptic interface from the Sensable Technologies product line (Appendix A). The haptic 

server provides in real-time force feedback-based information to the AT in order to perform 

mathematical calculations which support performance evaluation for motor skill training. A 

description of a preliminary development of haptic server has been presented by Cuevas-

Rodriguez at al. (2012). 

C.3.3.3 Visualization element 

The Visualization element enables displaying 3D virtual environments in which motor 

skills training occurs. The graphical rendering is performed by the 3DVia Virtools 5.0 VR 

Player (http://www.3ds.com/products/3dvia/3dvia-virtools/) at a 60 Hz refresh rate. In the 

experimental study 1 (Chapter 6), virtual environments were displayed on a 2D Panasonic 

LCD monitor (W: 850 x H: 450 mm) with a 1920 x 1080 pixels screen resolution. In the 

experimental study 2 (Chapter 7), virtual environments were displayed on a 3D screen (W: 

1500 x H: 1200 mm) with a resolution of 1280 x 960 pixels. Moreover, the trainee’s point of 

view was tracked using optical tracking technology implemented on a VRPN tracking server 

connected to the visualization element (Appendix B). 
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C.3.4 Topology of experimental setup  

This section shows how the ManuVAR platform has been used in the experimental 

studies presented in this thesis. Technological elements were distributed across several 

networked computers. Figures 87 and 88 respectively show the experiment setup for 

experimental studies 1 (Chapter 6) and 2 (Chapter 7). 

 

Figure 87. Setup of the experimental study 1(Chapter 6). 

 

Figure 88. Setup of the experimental study 2(Chapter 7). 
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Experimental Documentation 
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D.1 EXPERIMENTAL STUDY 1 

D.1.1 Consent form and payment form 
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D.1.2 Instructions 

Instructions were displayed in presentation slides. The following sections present the 

instructions provided for the haptic familiarization, the practice and the evaluation step. 

D.1.2.1 Haptic familiarization step 

Experimental Instructions

1

The display screen that you are working on today may be 
captured in video format

 

Objectives
� Haptic background task involves becoming familiar 

with the haptic device and aims to:

� Allow you to become accustomed to manipulating the 
haptic device within the virtual environment

� Allow you to perceive the:

� Weight of the virtual power tool

� Vibration of the virtual power tool

� Resistance of the virtual power tool

2  

 

Task context

You are facing a virtual environment that is a simulation 
of a polishing task performed as a part of the 

metallographic replica process

( a non-destructive inspection technique used to
monitor the degradation of a material).

3   

Virtual environment

� The Virtual Environment consists of:

� A pipe with a marked area where the task is performed

� A virtual polishing tool whose position and orientation
is controlled by the haptic device

� A presentation of the virtual enviroment is given on the
next slide

4  

 

Virtual Environment

Virtual polishing tool

Working Area

5

Pipe

 

Performing the task

Hold the haptic device as if you were 
holding a power tool

As shown in the next slide

6  
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Haptic Device

7   

Haptic Device

8

‘the stylus represents 
the polishing tool 
body with the 
polishing attachment 
sitting at a 90° angle 
from the end of the 
stylus’.

 

 

 

Performing the task

� Remember that you can repeat each exercise until 
you feel confident enough handling the haptic 
device

� Please complete each exercise in the virtual 
environment before switching to next slides

9   

Ex. 1.
� Move the  polishing tool up and down, left to right on the

marked area as in the pictures below

� When you feel you have completed the exercise move on to
the next slide

10

Remember that you can repeat each exercise until you feel 
confident enough handling the haptic device.

 

 

 

 

Ex. 2.1

11

Remember that you can repeat each exercise until you feel 
confident enough handling the haptic device.

� Place the tool disk onto each corner of the marked area for 
approximately 5 seconds as shown below

� When you feel you have completed the exercise move on to
the next slide

  

Ex. 2.2

12

Remember that you can repeat each exercise until you feel 
confident enough handling the haptic device.

� Place the tool disk onto each corner of the marked area for 
approximately 5 seconds as shown below

� When you feel you have completed the exercise move on to
the next slide
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Ex. 3.
� Press the dark button once, on the haptic device to start the

virtual polishing tool

� Move the  polishing tool up and down, left to right on the
work area, as in the pictures below

� When you feel you have completed the exercise move on to
the next slide

13

Remember that you can repeat each exercise until you feel 
confident enough handling the haptic device.

  

Ex. 4.1

14

Remember that you can repeat each exercise until you feel 
confident enough handling the haptic device.

� Virtual polishing tool must be switched on

� Place the tool disk onto each corner of the marked area for 
approximately 5 seconds as shown below

� When you feel you have completed the exercise move on to
the next slide

 

 

 

Ex. 4.2

15

Remember that you can repeat each exercise until you feel 
confident enough handling the haptic device.

� Virtual polishing tool must be switched on

� Place the tool disk onto each corner of the marked area for 
approximately 5 seconds as shown below

� When you feel you have completed the exercise move on to
the next slide

  

Thank you 

you have satisfactorily 

completed the haptic 

background task

16  

 

D.1.2.1 Practice step 

Experimental Instructions

1

The display screen that you are working on today may be 
captured in video format

  

Objectives

� Motor-Skills Training to train you in:

� Appropriately applying force onto a surface 

� Appropriately angling the virtual polishing tool 
in relation to the surface

2  
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Context

� You are facing the training application that consists of: 

� A simulation of a polishing task

� A side panel that enables you to monitor in real-time 
your task performance

3   

Virtual environment
� The Virtual Environment consists of:

� A pipe with a marked area where the task is performed

� A virtual polishing tool whose position and orientation
is controlled by the haptic device

As shown in the next slide

4  

 

 

Virtual Environment

Working Area

5

Virtual polishing tool

Pipe

  

Virtual environment

� Also a set of indicators which include:

� A timer that displays the duration of the task

� An illustration that gives you the optimum behaviour

� A overlaid written instructions explaining the task that
you are expected to perform

As shown in the next slide

6  

 

 

Set of Indicators

7

Timer Text instructions 

Image

  

Virtual environment

� The  side panel which consists of:

� Indicators representing force and angle

� Timer representing behaviour time as the accumulated 
time in which you have exerted the right amount of force 
and/or  placed the tool at the right angle

As shown in the next slide

8  

 

 



Motor Skill Training using Virtual Reality and Haptic Interaction - A case study in industrial maintenance 

244 

 

Side Panel

9   

Side Panel – Force Indicator

� Indicator that displays the force you 
apply to the surface of the pipe

� Correct force is between 1 to 5.3 
Newtons (equivalent to 100 to 500 
grams)

� Green area indicates the boundaries of 
the correct force

10  

 

 

Side Panel – Angle Indicator

� Indicator that display the angle relevant 
to the surface of the pipe

� Correct angle is between 0 to 10 degrees

� Green area indicates the boundaries of 
the correct angle

11   

Side Panel – Behaviour Time Indicator

� Behaviour time indicator consists of 
stop watch and a progression bar

� Behaviour time indicator displays the 
duration  to which you maintain the  
correct angle and force

12  

 

 

Performing the task
� The motor-skills training consists of 10 sessions,  after 

each you will rest.

� Each session is composed of 4 exercises

� Each exercise lasts 1 minute. 

� Instructions for each exercise will be provided within 
the text instruction box

13   

Performing the task

� During each exercise of the 5 first training 
sessions, you will be asked to adopt and maintain a 
static behaviour for 15 seconds

� Experiment supervisor will remind that you 
should not move while maintaining your 
behaviour for 15 seconds

14  
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Performing the task

� During each exercise of the 5 last training sessions, 
you will be asked to adopt and maintain a dynamic 
behaviour for 15 seconds

� Experimenter will demonstrate a movement 
following a specific trajectory while 
maintaining your behaviour for 15 seconds

15   

Performing the task
� In exercise 1, you will be asked to angle the polishing tool 

between 0 to 10 degrees and maintain your behaviour for 15 
seconds

� In exercise 2, you will be asked to apply a force between 1 N to 
5.3 Newtons and maintain your behaviour for 15 seconds

� In exercise 3, you will be asked to apply a force between 1 N to 
5.3 Newtons and angle the polishing tool between 0 to 10 
degrees and maintain your behaviour for 15 seconds

� In exercise 4, you will be asked to apply a force between 1 N to 
5.3 Newtons and angle the polishing tool between 0 to 10 
degrees and maintain your behaviour for 15 seconds

16  

 

 

Performing the task

� In exercises 1, 2 and 3, You can use the side panel to 
refine your angle and force

� In exercise 4, none of the force and angle indicators 
will be visible, so it is important you to remember your 
behaviour from previous exercises

17   

Performing the task

Hold the haptic device as if you were 
holding a power tool

As shown in the next slide

18  

 

 

Haptic Device

19   

Haptic Device

20

‘the stylus represents 
the polishing tool 
body with the 
polishing attachment 
sitting at a 90° angle 
from the end of the 
stylus’.
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Performing the task

If you feel you are ready, please face the training 
application

Hold the haptic device

Press the dark button to start the virtual polishing tool 

&

Now follow the overlaid instructions to perform the 
task

21  

 

D.1.2.3 Evaluation step 

Experimental Instructions

1   

Objectives

The aim of the end task is to evaluate your 
performance during the polishing task

2  

 

 

Context

You are facing the simulator 
application that consists of a 
simulation of a polishing task

3

e1

  

Virtual Environment

� The Virtual Environment consists of:

� A pipe with a marked area where the task is performed

� A virtual polishing tool whose position and orientation
is controlled by the haptic device

As shown in the next slide

4  
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Virtual Environment

Working Area

5

Virtual polishing tool

Pipe

  

Virtual Environment

�The Virtual Environment also consists of 
two colour map indicators:

�On the working area

�On the lower right corner of the monitor

As shown in the next slide

6  

 

 

Colour Maps

Working Area

7

Virtual polishing tool

Pipe

On the working area

On the lower 
right corner

  

Colour Maps

� Each colour map displays the progression of your task
performance

� It shows:
� Where you have polished

� How well you have polished

� with the changing colours :
� Red       means not polished

� Orange means not polished enough

� Yellow   means not polished enough

� Green means satisfactorily polished

As shown in the next slide

8

e1

 

 

 

Colour Maps

9

Virtual polishing tool

The changing colours 
represent: 

•Red; not polished

•Orange; not polished enough

•Yellow ; not polished enough

•Green; satisfactorily polished

  

Performing the task
� To accurately perform the task, the disk of the virtual 

polisher should be completely flat onto the surface of 
the pipe so that the angle equals 0 degrees

10  
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Performing the task

�Your performance is depicted on the colour 
map

�Optimum performance means the full 
colour map appears in green 

11   

Performing the task

Hold the haptic device as if you were 
holding a power tool

As shown in the next slide

12  

 

 

Haptic Device

13   

Haptic Device

14

‘the stylus represents 
the polishing tool 
body with the 
polishing attachment 
sitting at a 90° angle 
from the end of the 
stylus’.

 

 

 

Performing the task

If you feel you are ready, please face the simulator 
display

Hold the haptic device

Press the dark button to start the virtual polishing tool 

&

perform the polishing task in the whole working area

15   

Working Area

16

Virtual polishing tool

PipeIn the whole  working area

Performing the task
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D.1.3 Questionnaire 

Confidential Participant ID

Pre-screener

Name: ……………………………………………..............................................................................................

1) Do you have normal vision? � Yes � No

� Glasses � Contact lensesIf no, how is your vision corrected?
� Not corrected

� Yes � No2) Are you colour blind?

� Yes � No3) Do you have any other visual impairment?

If yes, please give details …………………………………………………………….……………………………..................

4) Do you regard yourself as susceptible to motion sickness?

� Not at all � Slightly � Moderately � Very much so

� Yes � No5) Are you presently in your normal state of health?
If no, please give details ……………………………………………………………………………………………………………

6) Do you have any of the following medical conditions?:
� Yes
� Yes
� Yes
� Yes
� Yes
� Yes
� Yes
� Yes
� Yes
� Yes

� No
� No
� No
� No
� No
� No
� No
� No
� No
� No

Migraine
Recurring headache
Back pain or back problems
Neck or shoulder strain

Wrist or arm pain
Heart condition
Asthmatic or respiratory disorder
Epilepsy (photosensitive or other)
Problems with depth perception
Other serious injury or illness

If yes, please give details ……………………………………………………………………..........................................
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Confidential Participant ID

Participant demographics

1) Age: � under 25 � 25-34 � 35-44 � 45-54 � 55-65 � over 65

Gender: � Male � Female2)

3) What is your occupation
.........................................................................................................

4) Have you any experience of computer sciences? � Yes � Some � No

� Yes � Some �5) Have you previous experience of playing video games? No

6) Have you previous experience of using virtual environments? � Yes � Some � No

� Yes � Some �7) Have you any experience using a haptic device? No

8) Have you previous experience of handling power tools? � Yes � Some � No
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Confidential

Section 1:Pre Symptom Checklist

Please circle below if any of the following symptoms apply toyouright now

Participant ID

1.
2.
3.

4.
5.
6.

7.
8.
9.
10.
11.
12.

General discomfort None
None
None
None
None
None
None
None
None
None
None
None

Slight
Slight
Slight
Slight
Slight
Slight
Slight
Slight
Slight
Slight
Slight
Slight

Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate

Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe

Fatigue
Boredom
Drowsiness
Headache
Eyestrain
Difficulty focusing
Salivation increased
Salivation decreased
Sweating

Nausea
Difficulty concentrating

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

Mental depression
“Fullness of the head”
Blurred vision
Dizziness eyes open
Dizziness eyes closed
Vertigo
Visual flashbacks
Faintness
Aware of breathing
Stomach awareness
Loss of appetite
Increase of appetite
Desire to move bowels
Confusion
Burping
Vomiting
Exhilaration

Other symptoms

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
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Confidential Participant ID

Section 2:Short Symptom Checklist (to be filled after
each step)

You should complete this questionnaire every 5 minutes as instructed by the experimenter

0 1 2 3 4 5 6 7 8 9 10
Unbearable

level of 
symptom

No symptom
at all

Please write down the number from the scale above corresponding to the level at which you are
experiencing the following symptoms right now in the first column below:

Start HB Part 1 Part 2 Part 3 Part 4

1 Headache

2 Eyestrain

3 Blurred vision

4 Dizziness (eyes open)

5 Dizziness (eyes closed)

6 Sickness

7 Physical fatigue

8 Mental fatigue
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Confidential Participant ID

End-task performance Task 1

1 Headache

2 Eyestrain

3 Blurred vision

4 Dizziness (eyes open)

5 Dizziness (eyes closed)

6 Sickness

7 Physical fatigue

8 Mental fatigue

Part 5 Part 6 Part 7 Part 8 Part 9 Part 10

1 Headache

2 Eyestrain

3 Blurred vision

4 Dizziness (eyes open)

5 Dizziness (eyes closed)

6 Sickness

7 Physical fatigue

8 Mental fatigue
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Confidential Participant ID

Section 3:Haptic Background Questionnaire

3.1. User Feedback: Haptic background Task

Please provide any further comments below

Strongly

agree

Agree Neutral Disagree Strongly

disagree

1. I found it easy to do the task

2. I found easy to handle haptic device

3. I feel confident in handling the haptic

device simulating the virtual polishing
tool

4. I do not feel mentally fatigued

5. I do not feel physically fatigued
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Confidential Participant ID

Section 4:Motor-Skills Training Questionnaire

User Feedback: Motor-Skills training (to be repeated after each training session)

Please provide any further comments below

Strongly

agree

Agree Neutral Disagree Strongly

disagree

1. I found it easy to do the task

2. I found easy to handle haptic device

3. I found it easy to apply force

4. I found it easy to keep within the force

threshold

5. I found it easy to angle the polishing

tool

6. I found it easy to keep within the angle
threshold

7. I found it easy to maintain the

expected behaviour during the
required time (5 or 15 seconds)

8. I feel satisfied with my performance in
this training session

9. I feel I performed the task accurately

10. I do not feel mentally fatigued

11. I do not feel physically fatigued
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Confidential

Section 5:End-Task Questionnaire

Participant ID

User Feedback: end-task Performance

Please provide any further comments below

Strongly

agree

Agree Neutral Disagree Strongly

disagree

1. I found it easy to do the task

2. I found easy to handle haptic device

3. I found it easy to maintain the

expected behaviour during the
required time during the task

4. I feel satisfied with my performance

5. I feel I performed the task accurately

6. I do not feel mentally fatigued

7. I do not feel physically fatigued
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Confidential

Section 6:Post Symptom Checklist
Please circle below if any of the following symptoms apply toyouright now

Participant ID

1.
2.
3.
4.
5.

6.
7.
8.
9.
10.
11.
12.

General discomfort None
None
None
None
None
None
None
None
None
None
None
None

Slight
Slight
Slight
Slight
Slight
Slight
Slight
Slight
Slight
Slight
Slight
Slight

Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate

Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe

Fatigue

Boredom
Drowsiness
Headache
Eyestrain
Difficulty focusing
Salivation increased
Salivation decreased
Sweating

Nausea
Difficulty concentrating

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

Mental depression
“Fullness of the head”
Blurred vision
Dizziness eyes open
Dizziness eyes closed
Vertigo
Visual flashbacks
Faintness
Aware of breathing
Stomach awareness
Loss of appetite
Increase of appetite
Desire to move bowels
Confusion
Burping
Vomiting
Exhilaration

Other symptoms

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
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Confidential Participant ID

Section 7:Final evaluation questionnaire

(to be performed after the end-task simulation)

7.1 Visual display and interface design

Please provide any further comments below

Strongly

agree

Agree Neutral Disagree Strongly

disagree

1. I found the virtual environment to be

realistic

2. I found the screen was not cluttered

with unnecessary information

3. The visual quality of the display did
not impact on my performance

4. I found the colour map easy to

understand

5. I found the side colour map practical

to evaluate the advancement of my
performance

6. I found the colour map located onto

the material practical to evaluate the
advancement of my performance

7. I found it easy to correlate the colour

map with a location on the material
surface
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Confidential Participant ID

7.2 Haptic device

Please provide any further comments below

Strongly

agree

Agree Neutral Disagree Strongly

disagree

1. I found it easy to manipulate the
haptic device

2. I found the force simulation of

polishing tool realistic

3. I found the weight of the virtual

polishing tool realistic

4. I found the vibration of the polishing
tool realistic

5. I found the simulation of the contact

with surface realistic
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Confidential Participant ID

7.3 Virtual Environment and Presence

Strongly

agree

Agree Neutral Disagree Strongly

disagree

1. I felt completely involved with the

virtual representation

2. I was able to control the events in the
system

3. I was always aware of the displays
and the control devices

4. I was able to anticipate what would

happen next in response to my
actions in the system

5. The system reacted to my actions in a

way that I expected

6. I found that the input devices
distracted me from the virtual
representation

7. The visual display quality did not
interfere or distract me from
performing tasks using the system

8. The haptic feedback quality did not

interfere or distract me from
performing tasks using the system

9. The visual quality of the virtual
representation increased my sense of
feeling that I was actually “seeing”
the virtual object

10. The haptic quality of the virtual
representation increased my sense of
feeling that I was actually “feeling”
the virtual object

11. Whilst performing tasks with the
virtual object I found myself
distracted by other aspects of the
system
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Confidential Participant ID

7.4 Evaluation of training

Please explain your answer

Please explain your answer

Please explain your answer

3) The training I received was effective
to help me to accurately perform the
task

2) The training I received was sufficient
to help me to accurately perform the
task

Strongly

agree

Agree Neutral Disagree Strongly

disagree

1) The instructions I received were
sufficient to help me to understand
how to perform the task
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Confidential Participant ID

Please provide any further comments below
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D.2 EXPERIMENTAL STUDY 2 

D.2.1 Consent form 
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D.2.2 Instructions 

Instructions were displayed in presentation slides. The following sections present the 

instructions provided for part-task and whole-task training. 

D.2.2.1 Part-task training 

 

Curso de Réplicas Nivel I

Motor-Skills Training

Curso Réplicas Metalográficas, 7-9 de Febrero, 2012

  
Curso de Réplicas Nivel I

Introducción

A continuación vas a realizar un curso de entrenamiento para  
asimilar conceptos relativos a la realización de réplicas 
metalográficas.

Vas a utilizar una aplicación desarrollada en el proyecto 
ManuVAR:

• Motor Skills 3D Application cuyo objetivo es aprender 
habilidades motoras, tales como el manejo, 
posicionamiento y fuerza requerida para el uso correcto de 
la herramienta Pulidora, durante los pasos:

– Desbaste Fino

– Pulido

 

 

 

ManuVAR 211548 3

Herramientas de Realidad Virtual

Para la realización de esta prueba, vais a utilizar los siguientes 
dispositivos:

• Pantalla estereoscópica que proyecta imágenes en 3D

• Gafas polarizadas para ver las imágenes en 3D  

• Sistema de posicionamiento óptico que capta su posición en la sala 
y permite cambiar el punto de vista de la pieza

• Dispositivo háptico que permite la interacción con el entorno 
virtual y simula la herramienta pulidora

  

Manejo del Dispositivo Háptico

ManuVAR 211548 4

El lápiz representa la herramienta pulidora, así que cógelo igual que  
usted haría con la herramienta real.
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Motor Skills Application

Esta aplicación consiste en la realización de una serie de 
ejercicios para aprender el manejo de la herramienta
Pulidora portatil durante los pasos de Desbaste fino y 
Pulido.

El entorno virtual consiste en:

• Una tubería con un área marcada en gris que 
representa la zona de trabajo donde se va a realizar la 
réplica. 
• Una herramienta virtual que simula a la Pulidora 
portatil cuya posición y orientación es controlada por 
el dispositivo háptico.

  

Motor Skills App: Entorno Virtual

ManuVAR 211548 6

Área de trabajo

Herramienta Virtual

Tubería

 

 

 

Motor Skills App: Indicadores 

En la pantalla podrás ver un panel lateral con unos indicadores para 
ayudarte durante la ejecución:

• Fuerza (en Newton) que representa la presión que estás ejerciendo 
sobre la superficie utilizando el dispositivo háptico.

• Ángulo (en grados) que representa la orientación del disco de la 
herramienta respecto de la superficie de la tubería.

• Cronómetro que indica el tiempo restante (en segundos) durante el 
cual tiene que mantener determinada posición y/o fuerza con la 
herramienta.

Y además:

• Timer (en segundos) que representa la duración total del ejercicio.

• Instrucciones en el cuadro superior que es la descripción del ejercicio 
a realizar. 

ManuVAR 211548 7
  

Motor Skills App: Indicadores

Timer

Instrucciones

Panel lateral

 

 

 

Motor Skills App: Indicador de Fuerza

ManuVAR 211548 9

• Fuerza requerida debe estar entre 1 y 
5 Newtons 

• Fuerza aplicada se muestra como una 
barra de color rojo.

• Las rayas grises indican los límites de 
la fuerza requerida.

  
ManuVAR 211548 10

Motor Skills App: Indicador de ángulo

• Ángulo pedido debe estar entre 0 y 20 
grados.

• El ángulo se muestra como una aguja.

• El area verde indica los límites del 
ángulo requerido.
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ManuVAR 211548 11

• Se representa como un cronómetro.

• El indicador representa el tiempo 
restante durante el cual debes 
mantener el comportamiento 
correcto.

Motor Skills App: Indicador de tiempo

  

• La tarea consiste en el entrenamiento de los diferentes 
conceptos necesarios en la realización de la réplica 
metalográfica.

• El entrenamiento se realizara en pareja, aunque 
alternativamente, de forma que solo un alumno este en 
la sala de realidad virtual haciendo los ejercicios.

• Cada alumno se entrenará en una tarea de la réplica 
metalográfica, Desbaste Fino o Pulido.

ManuVAR 211548 12

Motor Skills App: Realización de la tarea

 

 

 

• Antes de empezar el entrenamiento, vas a realizar un 
examen para evaluar tu nivel en la tarea que te fue 
asignada (desbaste fino o pulido).

• Al finalizar el entrenamiento realizarás también un 
examen para evaluar tu nivel. 

• Cada examen consiste en una serie 6 ejercicios de una 
duración máxima de 1 minuto durante los cuales se te 
pedirá mantener ángulos y fuerzas específicos durante 
10 segundos. 

ManuVAR 211548 13

Motor Skills App: Realización de la tarea

  

• El entrenamiento consiste en un tipo de lección para 
cada tarea.

• Lección  de Desbaste Fino:

• Límites de Ángulo [60º-85º] 

• Límites de Fuerza [1N-5N]

• Lección de Pulido:

• Límites de Ángulo [0º-20º] 
• Límites de Fuerza [1N-5N]

ManuVAR 211548 14

Motor Skills App: Realización de la tarea

 

 

 

• Cada lección está formada por 4 ejercicios. Cada ejercicio dura como 
máximo 1 minuto.

• Después de cada lección, irás a descansar. El siguiente alumno entrará 
a realizar su lección.

• Las instrucciones de cada ejercicio se muestran en el cuadro de texto 
superior.

• Durante el ejercicio, se te pedirá que adoptes y mantengas durante 10 
segundos una determinada posición y fuerza con la herramienta.

• Además, esta posición y fuerza deben mantenerse de forma dinámica, 
siguiendo una determinada trayectoria (tal y como aparece en la 
diapositiva siguiente).

ManuVAR 211548 15

Motor Skills App: Realización de la tarea

  
ManuVAR 211548 16

Motor Skills App: Trayectoria requerida
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ManuVAR 211548 17

• Ejercicio 1: Mantener la pulidora con un ángulo determinado dentro de 
los límites propuestos respecto a la superficie y mantener esta posición 
durante 10 segundos (los indicadores estarán visibles).

• Ejercicio 2: Aplicar con la pulidora una determinada fuerza sobre la 
superficie dentro de los límites propuestos y mantener esta fuerza 
durante 10 segundos (los indicadores estarán visibles).

• Ejercicio 3: Aplicar una determinada fuerza y un determinado ángulo
dentro de los límites propuestos y mantener esta posición durante 10 
segundos (los indicadores estarán visibles).

• Ejercicio 4: Aplicar una determinada fuerza y un determinado ángulo
dentro de los límites propuestos y mantener esta posición durante 10 
segundos (no se mostrarán los indicadores, de forma que realizarás este 
ejercicio “a ciegas”).

Motor Skills App: Descripción de los ejercicios

  

Ahora, ya puedes comenzar tu entrenamiento virtual. 

Para empezar cada ejercicio, debes pulsar una vez el botón del dispositivo

(no es necesario mantenerlo presionado)

Por favor, si tienes alguna duda y/o pregunta, consúltanos en cualquier 
momento del entrenamiento. 

¡MUCHAS GRACIAS POR TU PARTICIPACIÓN!

Curso de Réplicas Nivel I 18  

 

D.2.2.2 Whole-task training 

Curso de Réplicas Nivel I

Simulator Application

Curso Réplicas Metalográficas, 7-9 de Febrero, 2012

  
Curso de Réplicas Nivel I

Descripción

A continuación vas a realizar un curso de entrenamiento
libre para realizar una réplica metalográfica.

Vas a utilizar una aplicación desarrollada en el proyecto
ManuVAR:

• Simulator 3D Application cuyo objetivo es el
entrenamiento libre en el uso de la herramienta
Pulidora portatil para una realización óptima de los
pasos:

- Desbaste Fino

- Pulido

 

 

 

ManuVAR 211548 3

Herramientas de Realidad Virtual

Para la realización de esta prueba, va a utilizar los siguientes
dispositivos:

• Pantalla estereoscópica que proyecta imágenes en 3D

• Gafas polarizadas para ver las imágenes en 3D

• Sistema de posicionamiento óptico que capta su posición en la sala
y permite cambiar el punto de vista de la pieza

• Dispositivo háptico que permite la interacción con el entorno
virtual y simula la herramienta pulidora

 

Manejo del Dispositivo Háptico

ManuVAR 211548 4

El lápiz representa la herramienta pulidora, así que cójalo igual que  
haría con la herramienta real.
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Simulator Application

ManuVAR 211548 5

El entorno virtual consiste en:

• Cuerpo de una válvula con un área marcada en gris que 
representa la zona de trabajo donde se va a realizar la 
réplica. 

• Una herramienta virtual que simula a la Pulidora cuya 
posición y orientación es controlada por el dispositivo 
háptico.

• Dos mapas de color:

–Sobre el área de trabajo

–En la esquina inferior derecha de la pantalla

  
ManuVAR 211548 6

Área de trabajo

Herramienta Virtual

Válvula

Mapa de color

Simulator Application: Entorno Virtual
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– Lugar en el área donde ya ha desbastado o pulido

– Cómo de bien lo está realizando 

– Identificación colores:

• Rojo: No desbastado/pulido

• Naranja: No desbastado/pulido suficientemente

• Amarillo: Casi desbastado/pulido 
completamente.

• Verde: Desbastado/pulido completamente

Simulator Application: Mapa de color

Cada mapa de color muestra el grado de progreso en la 
ejecución de la tarea. Éste muestra:

  

• Antes de empezar el entrenamiento, vas a realizar :

– Una prueba (no evaluable) que te permitirá entender el
concepto de la simulación con mapa de color.

– Un examen para evaluar tu nivel en la tarea que te fue
asignada (debaste fino o pulido) sin mapa de color.

• Al finalizar el entrenamiento, realizarás el mismo examen (sin
mapa de color) para evaluar tu aprendizaje después tu
entrenamiento.

• Cada examen consiste en realizar tu tarea (debaste fino o pulido)
en el simulador durante 3 minutos. Los mapas de color no se
mostrarán mientras realizas el examen.

ManuVAR 211548 8

Simulator Application : Realización de la tarea

 

 

 

ManuVAR 211548 9

Simulator App: Realización de la tarea

• El entrenamiento consiste practicar tu tarea (Desbaste Fino o Pulido).

• La tarea se lleva a cabo sin mostrar el mapa de color. Cuando
considere que la tarea ha finalizado, podrá ver el mapa de color. Si el
resultado no es satisfactorio, podrá continuar realizando la tarea.
Esto podrá repetirse cuantas veces quiera, hasta un máximo de 3
minutos.

• Una ejercicio dura 3 minutos durante los cuales debes realizar tu
tarea dentro del área de réplica.

• Después de cada ejercicio, irás a descansar. El siguiente alumno
entrará a realizar el mismo ejercicio.

  
ManuVAR 211548 10

Simulator App: Realización de la tarea

• IMPORTANTE Requisito para tu tarea: Es importante no
salirse de la área gris de trabajo. Si esto ocurriera, la
réplica quedaría invalidada.

• Para el Desbaste Fino y el Pulido se deberá realizar la
tarea aplicando un movimiento tal y como aparece en la
diapositiva siguiente.
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Simulator App: Realización de la tarea

  

Ahora, ya puede comenzar el entrenamiento virtual. 

El ejercicio comienza cuando pulses el botón del dispositivo.

Recuerda que es importante no salirse de la área gris de trabajo. 

Por favor, si tiene alguna duda y/o pregunta, consúltenos en cualquier 
momento del entrenamiento. 

¡MUCHAS GRACIAS POR SU PARTICIPACIÓN!

Curso de Réplicas Nivel I 12  



 

 

 

D.2.3 Questionnaire for expert metallurgists 

AREA 2: HUMAN FACTORS

ManuVAR Training Tool Evaluation (Expert)

Section 1: Open questions

1. What is your overall impression of the technology you have seen today?

2. Which parts of the task or tool did you like? Please explain your answer.

3. Which parts of the task or tool did you dislike? Please explain your answer.

4. Could the training of the task be carried out more easily using the ManuVAR tool when compared to the conventional way of training?

This questionnaire relates to the ManuVAR Training tool. The aim of this questionnaire is to measure the to measure pleasantness, likelihood of acceptance, easiness,
and motivation of ManuVAR applications. The effectiveness of your learning will be evaluated through the data analysis. The following questions ask you about your
experience and views on what you have seen. Please complete the questions below by ticking the appropriate box to indicate to what extent you agree or disagree
with the statements. If the statement is not relevant to the task that you have seen, please tick the ‘Not Relevant’ box.

Participant ID:
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5. Could the training of the task be carried out more accurately using the ManuVAR tool?

6. What type of training/knowledge do you think is required to use the ManuVAR tool effectively, i.e. do users need any pre-lessons for the procedural
task?

7. What type of training/knowledge do you think is required to use the ManuVAR tool effectively, i.e. do users need any pre-lessons for the training
using the haptic device?

8. In your opinion, how well does the simulator reproduce the task it simulates?
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Section 2: Setting up the task

Section 3&4: Performing the task and Display of task progress

� Procedural training

Strongly agree Agree Neutral Disagree Strongly disagree Not Relevant

1. I think it’s a good tool for learning.

2. I found it easy to do the task

3. The object of the task was clear and easy to understand

4. I found it easy to use the tool

5. The information on the screen was easy to understand

6. I think the general principles of metallographic replica performance are covered
by this training

7. I liked the way that the procedural training was represented

Stronglyagree Agree Neutral Disagree Strongly disagree Not Relevant

1. The quality of the display image was good

2. The visual quality of the display did not impact on my performance

3. It was easy to launch the tool

4. The user interface for launching the application was easy to use
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� Motor skills training

� Simulation training

Strongly agree Agree Neutral Disagree Stronglydisagree Not Relevant

1. I found it easy to do the task

2. The user interface seemed intuitive to use

3. I understood what was happening during the task (S4)

4. I found the colour map helpful to perform my task (S4)

5. Virtual representations of objects moved in a natural way

6. I liked the way the simulation application was represented

7. I did not experience any physical discomfort during the task

8. It was easy to use the haptic device

Strongly agree Agree Neutral Disagree Strongly disagree Not Relevant

1. I found it easy to do the task

2. I found the force feedback helpful to perform my task (S4)

3. I found the angle feedback helpful to perform my task (S4)

4. The system provided adequate feedback to show the time that has passed during
the task (S4)

5. I found it easy to learn how to use the haptic device

6. It was easy to use the haptic device

7. Virtual representations of objects moved in a natural way.

8. I liked the way that the motor skills application was represented

9. I did not experience any physical discomfort during the task
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Section 5&6: Accessing and visualization of data

Section 7: General Questions

Please provide any further comments

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
……………………………………………

Strongly agree Agree Neutral Disagree Strongly disagree Not Relevant

1. Overall, it was easy to learn the task when compared to the conventional method

2. Overall, I enjoyed using the system

3. After using the system I would feel more confident about performing the task in the
real world

4. This system is very innovative

Strongly agree Agree Neutral Disagree Strongly disagree Not Relevant

1. It was easy to access the stored data in the Performance Analyzer tool

2. The Performance Analyzer tool helped me to understand the results of the training

3. I like the way the results are presented

4. The summary of results screen was easy to understand
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D.2.4 Questionnaire for non-expert workers 

AREA 2: HUMAN FACTORS

ManuVAR Training Tool Evaluation (Novice)

Section 1: Open questions

1. What is your overall impression of the technology you have seen today?

2. Which parts of the task or tool did you like? Please explain your answer.

3. Which parts of the task or tool did you dislike? Please explain your answer.

4. Do you think that the training of the task was carried out accurately using the ManuVAR tool?

5. Do you think that the training of the task was carried out quickly using the ManuVAR tool?

This questionnaire relates to the ManuVAR training tool. The aim of this questionnaire is to measure the to measure pleasantness, likelihood of acceptance, easiness,
and motivation of ManuVAR applications. The effectiveness of your learning will be evaluated through the data analysis. The following questions ask you about your
experience and views on what you have seen. Please complete the questions below by ticking the appropriate box to indicate to what extent you agree or disagree
with the statements. If the statement is not relevant to the task that you have seen, please tick the ‘Not Relevant’ box.

Participant ID:
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Section 2: Setting up the task

Section 3&4: Performing the task and Display of task progress

� Procedural training

� Motor skills training

Strongly agree Agree Neutral Disagree Strongly disagree Not Relevant

1. I found it easy to do the task

2. I found the force feedback helpful to perform my task (S4)

Strongly agree Agree Neutral Disagree Stronglydisagree Not Relevant

1. I found it easy to do the task

2. I found it easy to use the application

3. The information on the screen was easy to understand

4. The object of the task was clear and easy to understand

5. I enjoyed the training

6. After a question I was told if I was right or wrong and after a session I looked at a
chart: these elements pushed me to continue the training

7. I liked the way that the procedural training application was realized

8. I easily learned the general principles of metallographic replica performance

Stronglyagree Agree Neutral Disagree Strongly disagree Not Relevant

1. The quality of the display image was good

2. The visual quality of the display did not impact on my performance
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� Simulation training

Section 5&6: Accessing and visualization of data

Strongly

agree

Agree Neutral Disagree Strongly disagree Not Relevant

1. The Performance Analyzer tool helped me to understand the results of my training

2. I like the way the results are presented.

Stronglyagree Agree Neutral Disagree Strongly disagree Not Relevant

1. I found it easy to do the task

2. The user interface seemed intuitive to use

3. I understood what was happening during the task (S4)

4. I found the colour map helpful to perform my task (S4)

5. It was easy to use the haptic device

6. Virtual representations of objects moved in a natural way.

7. I liked the way that the simulation application was represented.

8. I did not experience any physical discomfort during the task

3. I found the angle feedback helpful to perform my task (S4)

4. The system provided adequate feedback to show the time that has passed during
the task.(S4)

5. I found it easy to learn how to use the haptic device

6. It was easy to use the haptic device

7. Virtual representations of objects moved in a natural way.

8. I liked the way that the motor skills application was realized.

9. I did not experience any physical discomfort during the task
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Section 7: General Questions

Please provide any further comments

Strongly

agree

Agree Neutral Disagree Strongly disagree Not Relevant

1. Overall, it was easy to learn the task

2. Overall, I enjoyed using the system

3. After using the system I would feel more confident about performing the task in the real
world

4. This system is very innovative
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Appendix E. Experimental Study 1: 

Analysis of Comments 

E.1 THEME-BASED CONTENT ANALYSIS 

The theme-based content analysis (TBCA) (Neale & Nichols, 2001) proposes a 

methodological framework to enhance the qualitative evaluation of the usability of interactive 

technologies (Patel et al., 2005; Cranwell et al., 2012). It has been used in the EU funded 

research projects KidStory (http://www.sics.se/kidstory/) (Stanton et al., 2001) and 

ManuVAR (http://www.manuvar.eu) (Langley et al., 2011). 

TBCA is a consistent analysis method for qualitative information that prevents the 

misinterpretation of terminologies when taken out of their original context. Moreover, it 

provides valuable indications of results by grouping those data into meaningful categories.  

TBCA is carried out through a five stages procedure based on coherent isolation and 

identification of qualitative data relevant topics to be then clustered into categories:  

1. Stage 1 consists in the data collection process. In both experimental studies 

presented in this thesis (Chapters 6 & 7), participants were invited to provide 
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comments concerning their experience through written questionnaires. Those 

questionnaires are presented in Appendix D.  

2. Stage 2 consists in the data collation process. Collected Data are grouped 

according to topics that are relevant in the scope of the study and are presented 

in the form of a simple matrix.  

3. Stage 3 consists in the definition of themes and classification process. A team 

composed of a minimum of two researchers determine raw data themes and 

group the information according to these themes (Neale & Nichols, 2001). The 

number of responses falling into each theme is then indicated in the matrix. 

This stage is generally based on a discussion between researchers which leads 

to several refinements in the matrix. 

4. Stage 4 consists in the selection process of higher order themes which implies 

determining more general themes as a function of the number of participants 

responses falling into each of these themes.  

5. Stage 5 consists in presenting the classification in a structured and consistent 

way. A matrix format enables displaying classified qualitative data (raw data, 

raw data themes and higher order themes with frequency counts to indicate the 

popularity of each theme) for each group of participants and allows opening 

discussion between researchers regarding to the addressed hypotheses of the 

study. Section E.2 presents the content analysis of comments provided by 

participants in the experimental study 1 (Chapter 6). 
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E.2 EXPERIMENTAL STUDY 1: CLASSIFICATION MATRICES 

Table 21. Content analysis of comments provided by participants from FT group. 

Raw data Raw data themes 
Higher order 

themes 
...I was not sure about the force I applied…                         
Applying force was difficult. I never knew 
how much force I was really used...                                       
 Force was difficult to feel….              

Difficulties to apply 
correct force (3) 

Force (3) 

The most difficult part was on maintaining 
the force 
Slight confusion between too much and too 
little pressure… 
... The angle was good. easiness to apply correct 

Angle(1) 
Angle (1) 

… Training longer time, training sessions of 
15sec were too short.   

More training needed (2) Training (6)  

.... To improve upon accuracy, there could 
have been smaller session after each task to 
focus on improving small things such as 
maintaining the correct force or how to 
improve on keeping the angle constant. 
...Repetitive task really easy to continue 
doing 

Effective training (4) 

...I was able to repeat the training tasks 
many times to get better practice.    
… (Pressure) It would be easily learnt after 
a few tasks  
…I felt that training was good and my 
performance continued to improve.                                                
I feel progress was good throughout all 
tasks. 
After a series of training, I feel confident for 
doing the task.     
...I feel it very useful to maintain force, 
angle and trajectory….                                 
The sense of haptic feedback is improved 
during training sessions...                                                                          
...With the training, my sense and capability 
of doing the task are   improved.                                  
....Experiencing with few scenarios of 
trajectory also will help me recognizing 
what is the best I should do.                                                                                     
... I have been prepared about the task and 
how the strategy to handle it well...        
Training helps me to boost my performance                   
Slight confusion over orientation of the 
colour map at the start of the task 

Trouble in the 
orientation of the colour 
map (1) 

Colour Map 
(2) 
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Raw data Raw data themes 
Higher order 

themes 
The colour map helps me to understand 
what I should do with the task, which area 
should be covered, and how to maximize the 
coverage area. 

Useful indicator (1) 

 I got the instructions twice (verbal and 
presentation). I knew what I had to do…      

Clearness of Instructions 
(7) 

Instructions (7) 

The instructions on screen and from the 
demonstrator were very well and clearly 
explained...                                                                                                              
The demonstrator was very helpful and 
helped me feel at ease… 
Clear instructions...                                 
Instructions were clear and repeated to me 
often... 
Clear and Precise instruction, I totally 
understood what was expected of me...   
The instructions are easy to understand… 
Instructions were made clear so it is easy to 
understand... 
 The pre-experiment helps use to be familiar 
to use the device. 

Easiness of tool 
handling (1) 

Tool 
Handling(1) 

I do not know if I was on the surface or not 
and had to lift the device and reapply it.   

Contact Issues (1) Realism of 
Tool (2) 

… (Sense of haptics is increased during 
training) so when I performed the last task, 
it is really realistic...                                                                                                
... for the sense of reality, it is fine. 

Realistic haptic 
perception (1) 

The design is complete. Realistic environment 
(2) 

Realism of 
environment 
(2)  

The real representation of the VE of the real 
situation could improve the understanding 
from the first training to the last... 
I felt I did the task better than the results! Frustrated performance 

(1) 
Performance 
(3) 

I think I did a good job. Successful performance 
(1) 

I have never looked at the side colour 
map.… 

Self confidence while 
performing (1) 

...With the up to down trajectory, I feel I 
could boost my performance. 

up to down motion (1) Trajectory (1) 

The screen may have been a bit close to me Screen distance issues 
(1) 

Setup issues 
(2) 

...The angle of view onto the display when 
standing was not good onto the display. 

Standing posture POV 
issue (1) 

….Indicators were good for training.    useful Feedback 
indicators (2) 

Feedback 
indicators (2) …. With the display, I know where the angle 

and force should be, and feel it directly. 
This is a good practice combined with the 
unseen displays….  
 I think the force felt different in the end 
task-> fatigue 

Physical demand (3) Physical 
fatigue (3) 

I feel a bit tired … 
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Raw data Raw data themes 
Higher order 

themes 
The fatigue is also caused by the real haptic 
and the arm floating in the air                                                           
 …. Some of the circumstances like the arm 
floating in the air without arm rest, and the 
sweaty of hand could reduce the 
performance and increase the fatigue....    
Efforts a lot of force and concentration… Attention demanding (1) Cognitive 

efforts (3) …. there was not much pressure on me to do 
the tasks 100% accurately, but in my own 
way and time. If there was pressure on me, I 
feel I would not be able to do the tasks to my 
full potential   

Not much mental load 
(2) 

I found it to be less pressure as the timing 
was not visible to me like in previous task 

 

Table 22. Content analysis of comments provided by participants from HT group. 

Raw data Raw data themes 
Higher order 

themes 
… I put too much force at the beginning. It 
showed nothing on the screen. 

Difficulties to apply 
correct force (7) 

Force (8) 

… It was difficult to know if these were 
correct. 
I was applying too much force in the 
beginning, so the colours did not change …. 
... No intuitive feeling of how to apply 
pressure …. 
... May be about the force (too high may be) 
but certainly I do not know how to measure 
it. 
Although it felt like it was difficult to 
gauge… 
You can´t really be aware of how much 
force you put on 
… After a while I got better hang of it…. Accustom to apply 

correct force (1) 
….it was difficult to know if these were 
correct. 

Difficulties to apply 
correct angle (2) 

Angle (2) 

Very Difficult to get in suitable position... 
I think applying force during the initial 
training would have led to a better 
performance. 

Training required (8) Training (9) 

Not enough exercise for the people who 
watch the video. Especially when we 
finished the video. We still have no fell 
about the task when there was no indicator 
showed up in the screen                                                                         
More exercise for the operator....          
It does not tell me the 
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Raw data Raw data themes 
Higher order 

themes 
operator/demonstrator how to apply the 
force and place the handle to finish the task. 
I wish I could practice on angling and 
applying force. 
No practical hand on aspect to the training 
With a little bit more time using the device 
rather than watching the film I think I could 
have achieved the green in a fairly smooth 
manner                                                                                    
The film did not make a big difference and I 
think I would have had the same result 
without it                                                                                                           
With more training of the same kind I think 
it was helpful. 
I Feel that Performing training shown on 
video would have helped                                                                 
…. For novices like me, the practical 
training shown on the video would be very 
necessary. 
I was hoping to train myself about how to 
make 1-5N forces and 0-10 degrees angle.                                                                                                            
At least, there are clues what to do on the 
task, so basically the training is useful (but 
for me it is not sufficient enough since I need 
to practice it, not only watch it). 
It just needs practice, I think.                                                                                             
I still struggled to do the polishing, but it did 
help somehow. 
The video part is too lengthy since much of 
the information has been understood. 

Useful training for 
understanding (1) 

We may need a sensible colour map. Just 
four colour may be not enough for the 
operator to feel whether we operate the 
device right or not.                                                                      
More colour on the map to illustrate the 
operator task. 

More advanced colour 
map needed (1) 

Colour Map 
(4) 

I found it easier to look at the working area 
to see the little progress I appeared to make. 

Useful indicator (3) 

...I found that the changing colour and the 
feel was a better guidance to achieve the 
green colour.                                                                                                   
... The colour was what mattered most and 
helped me to put a less strong and more 
efficient force (judging from the colour) 
towards the end.                                                                      
... I let the colour screen be the guiding 
device. 
I liked the colour map. I would be able to 
comment more if I had been more successful 
but concept of showing where more work is 
needed is great. 
Clear instructions and answer to questions. Clearness of Instructions Instructions (7) 
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Raw data Raw data themes 
Higher order 

themes 
The instructions via the training session 
were very informative. 

(6) 

I understood what I was supposed to do... 
Clear enough to explain what I should do. 
The instructions are detailled and well 
defined.                  
On the whole experiment, instructions 
provide clear information of the experiment 
and how it should be operated. 
there were clear instructions. 
Probably needed more instruction i.e.: 
practicalities - how to hold, how to change 
angle and how to change pressure 

Weakness of 
instructions (1) 

… I wonder what kind of ways of holding the 
device to make a correct position and 
correct effect on the surface (polishing 
process). 

Difficulties in tool 
handling (2) 

Tool Handling 
(4) 

...it was difficult to see how I was holding 
the device and where I was placing it, it 
seems like something you need to get used 
to.                                                It was 
generally difficult ... to work the device…. 
I found it easy for the demonstrator to 
control the handle and finish the task 
perfect. 

Easiness of tool 
handling (2) 

…. and easy to handle… 
I would have expected more vibration from 
the device… 

Weakness in vibration 
realism (1) 

Realism of 
Tool (5) 

I thought the sound feedback would reflect 
the angle and the force but it did not. 

Lack of realism of 
sound (1) 

The contact of the surface can´t be obviously 
felt by the operator 

Contact Issues (1) 

It seems to be quite realistic…                                               
Well, I have never held a polishing tool, well 
once I did and it was similar to this 
actually… 

Realistic tool simulation 
(1) 

It is hard to judge how realistic is the 
experience was when I have not experienced 
the real tool…. 

No comment (2) 
Ignored 

...difficult to comment. 
…poor environment. lack of realism (1) Realism of 

environment 
(1) 

I think I would do much better a second 
time. 

Not successful 
performance (6) 

Performance 
(6) 

It is a bit upset when you see nothing has 
changed at all. 
….I was disappointed that I did not appear 
to get any green "well polished areas" 
The colour red as this was the only colour I 
really saw due to my performance!... 
... and I did not manage to get it all green, 
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Raw data Raw data themes 
Higher order 

themes 
hence not accurate. 
… I was not successful, and I have no 
experience of power tool… 
Not as easy as I think.                                                           
Wonder why I could not do it? ….                                                                       
….I was not doing the movements as I had 
learned earlier… 

No comment (1) Trajectory (1) 

Red colour may be a little too strong(flashy) brightness issue (4) Setup issues 
(4) The colour red as this was the only colour I 

really saw due to my performance! Was very 
intense. 
I feel eyestrain after the experiment... 
….staring at the screen for a long time 
really hurt my eyes and gave me a 
headache. 
I did not do the training but I think I would 
have found it easier if the indicators were 
just above the polisher so I could see both at 
the same time. 

Feedback indicators 
would have been 
required (4) 

Feedback 
indicators (4) 

(Lack of feedback)( for the end task) It is 
better to put a force indicator on the screen 
to show the operator how much force should 
be applied on the device because …… 
There was not feedback on the screen to 
show angle or pressure being applied to 
device, so it was difficult to know if these 
were correct.                        
No practical work so no feedback on angle 
or pressure to use the tool. 
I felt dizzy after the experiment and wanted 
to have physical exercise or stretching. 

Physically demanding 
(1) 

Physical 
fatigue (1) 

... You have to be concentrated during the 
polishing. 

Attention demanding (3) Cognitive 
efforts (3) 

At times the device will go out of control.  
You need to be concentrated. 
It was generally difficult to concentrate 
 

Table 23. Content analysis of comments provided by participants from CT group. 

Raw data Raw data themes Higher order 
themes 

I was not sure if I was applying the correct 
pressure 

Difficulties to apply 
correct force (7) 

Force (8) 

... At first, I did not realize what pressure to 
apply …. 
Not sure why I was not getting it right        
I was unsure about how much force I was 
applying… 
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Raw data Raw data themes Higher order 
themes 

… I did not understand what level of 
pressure to maintain                                                                                  
I was unsure about the pressure levels 
Took a long time to figure out a way to have 
an effect on the colour map. 
It was hard to know how much force I was 
applying without an indicator, was just 
going on how the device vibrated 
 …..I had trouble in getting the…force 
correct 
… after I got use to it … Got accustomed to 

apply correct force (1) 
It was hard to know what angle was the 
correct angle for polishing….                                                                                   
After completing the task, I realized I should 
have changed the angle I was holding the 
pen at to compensate for the cylindrical 
shape of the tube.......                                                           

Difficulties to apply 
correct angle (4) 

Angle (4) 

Not sure why I was not getting it right.                         
I could not understand or whether the angle 
was correct.                                                 
Took a long time to figure out a way to have 
an effect on the colour map 
….I had trouble in getting the angle ….. 
correct 
There is a difference between the training 
and actually performing the task                                                 
I found the task very interesting and with a 
bit more practice be able to perform the task 
better               

Training required (4) Effectiveness 
of Training  (8) 

I am sure I would have been more successful 
with the polisher if I had been given the 
chance to test it out before using it.        
It is obviously difficult to convert what I saw 
in the video into physical actions. 
No training, just the video.                  
Training exercises would be helpful.                  
…. Programming response is not easy to 
interpret from a video alone.  
The video representation of the positioning 
of the tool helped me understanding where it 
needs to be to achieve optimum results. 
The videos …. were informative and easily 
understood.                                                                                  

Useful training for 
understanding (4) 

 I think it is an effective way of learning and 
interesting (resembles playing video games). 
I had a good idea of how to perform it after 
watching the videos                                                                          
The video was a helpful indicator. 
Although I saw only the training I thought it 
was enough to help me perform the task. 
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Raw data Raw data themes Higher order 
themes 

It is quite hard to assess how much of the 
area had been polished, for example, the 
right hand side was not polished at all. 

Weak indicator (1) Colour Map 
(4) 

… It was easy to understand what I was 
doing using the colour indicator. 

Useful indicator (3) 

I would be able to be more specific about 
the feedback if I had progressed further, but 
the colour map seemed to work ok. 
Both maps were fine. I was pleased to see 
they changed colour slightly towards the 
end. 
Instructions were explained very well.            Clearness of Instructions 

(7) 
Instructions (7) 

… instructions were informative and easily 
understood 
I could understand what I was meant to do 
and how.                                                                                              
… I understood the idea.   
I understood how to manoeuvre the haptic 
tool …    
I understood what was expected of the task.    
Both written and verbal instructions were 
good.     
They were very clear. 
Haptic device easy to control… Easiness of tool 

handling (1) 
Tool Handling 
(4) 

… Programming response is not easy to 
interpret from a video alone.  

Difficulties in tool 
Handling (3) 

It was not easy to handle as I though … 
...It took a moment to be able to coordinate 
to right direction. 
The force simulation seemed to diminish 
when excess force was used.  
The vibration was realistic but would 
probably be stronger from the real device 

Weakness in force 
realism (1) 

Realism of 
Tool (8) 

 It was hard to tell when the polisher was in 
contact with the pipe. 

Contact Issues (3) 

Lack of indication when tool was in contact 
with pipe- sound change?...                                                         
Not a strong enough simulation of surface 
contact. 
It was hard to see why I did not touch the 
pipe/ make contact with it, especially as it 
felt I was touching it 
The task was very realistic giving feedback 
through the device, by vibration etc…     

Realistic tool simulation 
(4) 

I am not sure what to expect as I have never 
used a polishing tool but I assume it was 
accurate. 
 …. I could feed me feedback so I could 
distinguish different levels (referring to 
tangential force). 



Motor Skill Training using Virtual Reality and Haptic Interaction - A case study in industrial maintenance 

290 

 

Raw data Raw data themes Higher order 
themes 

…. The vibration was realistic ….  
    Realism of 

environment 
(0) 

…  I expected to do better. Not successful 
performance (2) 

Performance 
(3) … Not able to physically do what I was 

needed… 
I managed to perform the task… Acceptable performance 

(1) 
...Task distinctly easier when not following 
the trajectories and the haptic device was 
stationary. 

Increased complexity 
with trajectory 

Trajectory (1) 

...I see colours flashing in front of my eyes 
occasionally (like when you stare into a 
bright light). 

Brightness issues (1) Setup issues 
(1) 

    Feedback 
indicators (0) 

    Fatigue (0) 
    Efforts (0) 
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Appendix F. Experimental Study 2: 

Analysis of Comments 

This appendix presents the answers provided by participants to open-ended questions 

proposed throughout the whole ManuVAR demonstration stage. 

Table 24. Answers to question 1 from expert and non-expert workers.  

What is your overall impression of the potential of the technology you have 

seen today? 

 Positive responses Negative responses 

Experts It’s useful for the training to know 

which step and how it is performed. 

The potential is very good. 

The potential to perform the 

metallographic replica mechanical 

work is high and it is a good way to 

learn how to perform the steps. 

The 3D simulator is very good.  

Changing the point of view is close 

The haptic device is not close to the 

tool but it is still good. 

While handling the haptic device, you 

are looking left and right, but in the 

real situation you look straight in 

front. 
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What is your overall impression of the potential of the technology you have 

seen today? 

 Positive responses Negative responses 

to the real situation, you can think 

that it feels like holding the real 

tool, with vibrations and sounds. 

...this it is a good tool. 

Novices It is quite useful for learning the 

metallographic replica.  

Good. 

User performance is improved 

compared to the beginning of the 

task. 

Concerning the physical training, 

its fine ...  

The colour map is useful, you can 

check the work you are performing 

and how you perform it. 

It is an innovative and interesting 

application that is easy to use. 

The application is interesting and it 

is easy to learn using the 

application. 

As an introduction, it is fine.  

It is a good tool for introduction 

and can save you some time in the 

lab. 

It is hard to see if you are applying 

the good force or not. 

Concerning force and angle, it is 

fine ...  

 

... more time is required to get use to 

the haptic device. 

During the last test on the simulator, 

you don’t know where you are 

performing, so it is not easy to do it. 

But there is a discrepancy of the size 

of the tool to the real size. 

The application is fine but it is far 

from what it is in reality. 

It annoying when performing the last 

task, in contrast when you are 

performing in the real world you do 

have a visual idea about how you are 

doing. 

The work space of the haptic device 

is not accurate. 

...but the lack of feedback is annoying 

because in the real world they can 

see the metal changing. 

It would be good to mount the real 

polishing tool to the haptic device to 

perceive angle. 

The graphics need to evolve to a 

better quality. 

There is a lack of precision for 

example it was complicated to see 

where I was touching. 

I had some doubts if I was touching 
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What is your overall impression of the potential of the technology you have 

seen today? 

 Positive responses Negative responses 

or not touching the pipe. 

 

Table 25. Answers to question 2 from expert and non-expert workers. 

Which parts of the task or tool did you like? 

Experts As we have said the best part is the simulator because it makes you feel that 

you are performing the real metallographic replica. 

For us, the simulator. 

Novices I liked the simulator. 

It where you can learn more about making the metallographic replica. 

It fits to the reality of the work. 

Preferred the simulator task with the colour map. 

I liked the training on the simulator. 

I agree; I liked the learning method, it was very similar to performing the 

real task. 

For the 1st trial everything was fine. 

It is an innovation  

It is a positive application and it is clean, you are getting dirty while using 

it. 

 

Table 26. Answers to question 3 from expert and non-expert workers. 

Which parts of the task or tool did you dislike? 

Experts I think in the simulator the problem is to put the haptic in a good position 

If you are watching the pipe and the haptic is lower.  

Really it would be better if it was the same height. 

There is mismatch between the position of haptic and the screen. 

Novices I had trouble applying angles and angling the tool on the simulator. 

When I make the motor skill training with feedback it was ok but without 

feedback it was hard and not fitting to the real work. 

The indicator is helpful for orientation but when there was no feedback I was 



Motor Skill Training using Virtual Reality and Haptic Interaction - A case study in industrial maintenance 

294 

 

Which parts of the task or tool did you dislike? 

trying to remember what I did in the real world. 

There is a discrepancy between the angle of polishing tool in MS training and 

simulator compared to reality. 

Because I am small, I had to use step and this contributed in degrading the 

quality of the angle. 

The final exam without the colour map. 

I didn’t know how it was working, it was blind work. In contrast, in the real 

world you can see what you are doing. But it doesn’t mean I didn’t like it. I 

Just liked it less than the other elements of the application. 

In general there is nothing negative of the tool.  

At first it was uncomfortable and it was hard to perceive the black button in 

the dark 

The haptic device is warm and constrains the motion. 

It was fine but during the last part, the precision was not accurate. 

The image of the screen was blurry. 

 

 

Table 27. Answers to question 4 from expert and non-expert workers. 

Could the training of the task be carried out more easily using the ManuVAR tool 

when compared to the conventional way of training? 

Experts Yes I think so. 

It is useful but it could be combined with the conventional training. 

It is useful for the 1st steps. 

Do you think that the training of the task was carried out quickly using the 

ManuVAR tool? 

Novices Yes, it is better and quicker. 

Yes. 

The advantage of using tool is that you can make the training at your 

workplace and not on-site. 

For the physical training, it is better in the real world. 

After the training received, it might be more efficient to combine with the real 

world training, 

Yes, training is quicker, 



Appendix F. Experimental Study 2: Analysis of Comments 

295 

 

Its good using VR as a compliment to real world training and it provides 

background and knowledge to real world training. 

I really like it. 

VR training and physical training are complementary. 

Training is quicker because in real world you have to prepare a lot of thing but 

both training in VR and real word are complementary. 

 

Table 28. Answers to question 5 from expert and non-expert workers. 

Could the training of the task be carried out more accurately using the ManuVAR 

tool? 

Experts I think that Manuvar is useful to understand some points that we can teach to 

the students. 

Such as the red signals that let you know that you are wrong, but there is 

nothing in the traditional training that does this. 

In the simulation, it shows the point in which you have to polish. 

I think that Manuvar could cover some points that the traditional training 

cannot. 

Motor skills are good to learn the right angle and force. 

Novices It is a good tool because for somebody who hasn’t done a metallographic 

replica, it is useful to get the knowledge concerning force and angle. 

It is more complicated to learn in the lab.  

In the lab, instructors just say press more/less but with this tool it is easier to 

understand how much to press. 

Yes 

It trains you in adapting correct angle and force which drives you to the 

correct behaviour. 

It is more accurate and it allows you to repeat the task without spoiling the 

material. So, you are saving cost. 

VR training is complementary to real world training and it is very precise. It 

would be good to combine VR training and real world training. 

Yes, you can use as a background before the real world training. 
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Table 29. Expert only questions. 

What type of training/knowledge do you think is required to use the ManuVAR 

tool effectively, i.e. do users need any pre-lessons for the procedural task? 

Not relevant for the experimental study 

What type of training/knowledge do you think is required to use the ManuVAR 

tool effectively, i.e. do users need any pre-lessons for the training using the haptic 

device? 

Nothing, it is very easy to use. 

Maybe because we are use to using X-box. 

It is user friendly. 

In your opinion, how well does the simulator reproduce the task it simulates? 

Very, very, very good tool. 

Despite the graphics could be better but it doesn’t matter. 

The environment is very good. 

I like the simulator and I like the results. 

There are no problems in the tool. 
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