
Chapter 6
A VRPN Server for Haptic Devices Using
OpenHaptics 3.0

Maria Cuevas-Rodriguez, Matthieu Poyade, Arcadio Reyes-Lecuona,
and Luis Molina-Tanco

Abstract This chapter presents an implementation based on the Virtual Reality
Peripheral Network (VRPN 07.30) to handle connectivity between Virtual Reality
(VR) applications and SensAble® Technology Phantom Haptic Devices using the
OpenHaptics 3.0 Haptic Library Application Programmable Interface (HLAPI).
VRPN offers a client–server-based architecture to support network-transparent
connectivity between VR applications and a set of physical interaction devices.
In this context, VRPN provides a set of classes to handle various physical device
types. The proposed implementation consists of (a) new VRPN classes that support
connectivity between a haptic device server and VR applications, allow to specify
arbitrary 3D object information to haptically render geometries, and report applied
force, angle at contact point, Surface Contact Point (SCP), and Depth of Penetration
(DOP) and (b) an upgrade of the Phantom dedicated VRPN class to handle
haptic rendering using the OpenHaptics HLAPI to manage device state and force
computation.

6.1 Introduction

During the last decade, Virtual Reality (VR) applications have included a wide
variety of 3D interaction techniques and devices. Among them, the iteration between
Virtual Environments (VE) and the user used to be through two senses: the sight and
the hearing. Nevertheless, the touch sense is becoming more important and studied

M. Cuevas-Rodriguez (�)
Departamento de Tecnologı́a Electrónica, Universidad de Málaga, Malaga, Spain
e-mail: mariacuevasrodriguez@gmail.com

M. Poyade • A. Reyes-Lecuona • L. Molina-Tanco
Departamento de Tecnologı́a Electrónica, Universidad de Málaga, Malaga, Spain
e-mail: matthieu.poyade@uma.es; areyes@uma.es; lmtanco@uma.es

V.M.R. Penichet et al. (eds.), New Trends in Interaction, Virtual Reality and Modeling,
Human-Computer Interaction Series, DOI 10.1007/978-1-4471-5445-7 6,
© Springer-Verlag London 2013

73

mailto:mariacuevasrodriguez@gmail.com
mailto:matthieu.poyade@uma.es
mailto:areyes@uma.es
mailto:lmtanco@uma.es


74 M. Cuevas-Rodriguez et al.

in VR because it gives the user the possibility of interact and modify the environ-
ment. In this context, haptic devices play a really useful role in VR; they are very
important as they have allowed a wider multimodality, beyond the traditional visual
and auditory stimuli. In addition, haptic devices are bidirectional and allow a more
natural interaction closing the perceptual-motor loop between the user and the VE
[4]. For these reasons, many applications can benefit from using haptic devices to
enhance interaction and providing a realistic force feedback to the user. Specifically,
motor skill training applications need haptic interaction in order to be valid.

Haptic rendering is, however, very demanding in terms of computing power.
Hence, for many applications a dedicated computer is required in order to provide
realistic force feedback. This leads to the problem of connecting the computer or
computers where the graphical rendering is being performed and the computer
managing the haptic rendering [5]. There is an additional issue with manufacturers
of haptic devices providing different programming interfaces. A standard way of
efficiently accessing any haptic device through a local network connection would
make it easier to use these devices for a wider range of applications.

These issues had to be tackled in the ManuVAR project. The ManuVAR project
funded under the European Union’s Seventh Framework Programme (NMP-CP-
IP-211548) aimed to use virtual and augmented reality to develop an innovative
technology platform and a framework to support high value manual work. One of the
goals of this project was to provide a flexible platform where different technological
elements and methodologies could be connected in a modular way. Therefore, some
mechanism was needed for connecting haptic devices with a device-independent
and network-transparent interface.

Exactly for these purposes, the Virtual Reality Peripheral Network (VRPN) was
developed 10 years ago [7]. VRPN is an open source package, which provides a
network architecture for connecting different interaction devices to a VR appli-
cation. It has become a de facto standard for motion capture systems and tracker
devices. However it is less popular for other kinds of devices. In its distribution,
VRPN implements simple force feedback device classes for SensAble® products,
with very limited functionality. For that reason, it is hoped that this work will help
in contributing to VRPN becoming also a standard middleware for the integration
of haptic devices in VR environments.

This chapter reports a new implementation of a VRPN server which provides the
original tracker and button interfaces along with new and varied force device inter-
faces for SensAble® devices, using the OpenHaptics 3.0 Application Programmable
Interface (API) [1], updating and extending the functionalities available in the
current VRPN distribution (VRPN 07.30). This new VRPN server can manage the
three different models of haptic devices manufactured by SensAble®: the Phantom®

Onmi, Phantom® Desktop, and Phantom® Premium 3.0.
The remaining of the chapter is organized as follows: Sect. 6.2 gives a short

overview of VRPN and SensAble® Software Developer’s Toolkit (SDKs), Sect. 6.3
presents the main features of the proposed implementation, Sect. 6.4 briefly presents
an application where it is being tested, and, finally, Sect. 6.5 summarizes giving
some conclusions of this work.



6 A VRPN Server for Haptic Devices Using OpenHaptics 3.0 75

6.2 Technical Background

Haptic technology in VR offers a 3D multimodal real-time sensory motor interac-
tion paradigm that feedbacks force sensory information, leading to improve task
performance and enhance the way users interact within VEs [4].

SensAble® Technologies is a developer of haptic interfaces that manufacture the
Phantom® haptic devices since 1993 [6]. Different models of haptic devices are
available as previously mentioned. Each of these devices is shaped as stylus inter-
actuators and able to deliver force feedback and high degrees of maneuverability
within VEs providing the same feeling experimented by touching a surface with the
point of a pencil.

A CCC SDK to support haptic rendering for integration of the haptic interaction
paradigm in VEs is provided by SensAble® Technologies. General Haptic Open
Software Toolkit (GHOST) is a legacy API for Phantom® devices and currently su-
perseded by the OpenHaptics Toolkit, an Open GL-based library. The OpenHaptics
3.0 toolkit presents a three-layer architecture: the Haptic Device API (HDAPI), the
High-Level API (HLAPI), and the micro QuickHaptics API. HLAPI is a high-level
API able to haptically render geometries stored into OpenGL’s specific buffers.
It offers several commands to set custom force effects (stiffness, damping, static
and dynamic friction, viscosity, etc.) and handle the thread management required to
support haptic rendering. HLAPI manages three different threads: the client thread
(�30 Hz) supports graphical rendering, the collision thread (�100 Hz) supports
collision detection, and the servo thread (�1,000 Hz) handles the position and
orientation of the haptic device and calculates forces.

The combination of a computer graphics engine and a force feedback haptic
rendering engine results in a heavy computational load. An option to maintain
performance is to execute the graphics and haptics rendering loops in separate com-
puters [5]. VRPN offers a network-transparent architecture to handle connectivity
between VR applications and physical interaction devices. VRPN provides a set
of classes defining several canonical interface types. Each canonical class derives
into a remote client interface class and a device server interface class. Both specify
methods to be called from a remote client and the device server. Devices are mapped
into one or several canonical interface types depending on the information reported.
Generic interface types consist of Tracker, Button, Analog, Dial, and Force devices.
In overall, a purely physical device dedicated class that inherits from one or several
interface server types supports the device rendering.

At the time of writing, the currently available version of the standard dis-
tribution of VRPN is version 07.30. This version supports connectivity with
Phantom® devices through the canonical classes vrpn Tracker, vrpn Button, and
vrpn ForceDevice [7]. These provide, respectively, the functionality of a Tracker
that reports device position, orientation, velocity, and acceleration; Button that
reports device buttons state; and Force Device that handles haptic parameters
specifications and reports applied force and Surface Contact Point (SCP).



76 M. Cuevas-Rodriguez et al.

An additional class, vrpn Phantom, is responsible of the communication between
the haptic devices and the three canonical classes previously mentioned. It is the
responsible of the haptic rendering for these specific devices which inherits from
the Tracker server, Button server, and Force Device server dedicated classes.

6.3 Implementation

The main goal of this work is to make easier the management of haptic devices
through the development of two new classes to be included in the last version of
VRPN server. These classes provide innovative and useful functionalities allowing
a haptically render of arbitrary geometries.

A new client has been also developed in order to test the described client–server
architecture which allows the interaction with the VE. It is also in charge of creating
the graphic scene and sending its characteristics to the server to reproduce the haptic
scene.

6.3.1 New Classes Implemented

The proposed implementation consists of a new vrpn ForceDevice class,
named vrpn ForceDevice Uma (Fig. 6.1), and a new vrpn Phantom class,
vrpn Phantom Uma (Fig. 6.2).

The new vrpn ForceDevice Uma class, as the original one, supports connectivity
between a haptic device server and VR remote client applications, reporting applied
force and SCP. However, this new class allows specifying arbitrary 3D objects
information to haptically render geometries and reports not only applied force and
SCP but also angle at contact point, Depth of Penetration (DOP), and the identifier
of the object that has been touched.

The new vrpn Phantom Uma class implements OpenHaptics HLAPI functional-
ities to manage device states and haptically render force effect models to provide
force feedback. These two new classes have been implemented following the phi-
losophy and structure tree of the original classes of VRPN. The vrpn Phantom Uma
class inherits from the tracker and button canonical classes provided by VRPN and
the new force device server class (vrpn ForceDevice Uma) as shown in Fig. 6.2.

Fig. 6.1 VRPN class hierarchy for Force Device classes



6 A VRPN Server for Haptic Devices Using OpenHaptics 3.0 77

Fig. 6.2 Modifications to the VRPN

Table 6.1 New methods added to vrpn ForceDeviceRemote Uma interface

New methods Description

setObjectNumber Sets the number of objects to render
setVertex Sets the vertex of an object
setTransformMatrix Sets the transformation matrix for each object, which provides

orientation, position, and scale of the object
setEffect Sets the environmental effects to render. HLAPI provides four effects:

constant force, spring, viscosity, and friction. For each one, gain,
magnitude, frequency, duration, position, and the direction can be
provided

startEffect Indicates that the effect should begin
stopEffect Indicates that the effect should finish
setHapticProperty Sets the haptic properties of an object: stiffness, damping, static and

dynamic friction, pop through, and mass
setEnvParameters Sets the force effects which are used to generate ambient sensations:

gravity and inertia
setTouchableFace Sets the face of the object that will be haptically rendering: front,

back, or both. This feature is the same for all objects
setWorkspace Sets the work space, the space where the device is going to interact

with the VE

The function of each class is summarized in the following paragraphs.

vrpn ForceDevice Uma. This class manages message type declaration and message
encoding and decoding. This class increases the functionalities of the original
vrpn ForceDevice class, developing new message types and encoding and
decoding functions related to implemented methods described in Tables 6.1 and
6.2 to respectively support connectivity to remote client and device server.



78 M. Cuevas-Rodriguez et al.

Table 6.2 Send methods within the new vrpn Phantom Uma interface

Send methods Description

sendForce Sends the applied force
sendDOP Sends the Depth of Penetration
sendSCP Sends the Surface Contact Point
sendIsTouching Indicates if it is touching an object
sendTouchedObject Sends the identified of the object that this is touching
sendAngle Sends the angle at contact point

vrpn ForceDeviceRemote Uma. This class provides a set of new methods
(Table 6.1) for the client application. These methods enable sending haptic
parameters, defined in the client application, to be integrated with haptic
rendering on the server side. Furthermore, vrpn ForceDeviceRemote Uma class
implements a set of callback functions to receive haptic information messages
from the server.

vrpn ForceDeviceServer Uma. It handles a set of callbacks to receive haptic param-
eter definition messages from the client decoding and forwarding the messages
to vrpn Phantom Uma class.

vrpn Phantom Uma. The new vrpn Phantom Uma class has direct communica-
tion with the device using the OpenHaptics HLAPI. This class organizes
within a set of structures, the received haptic parameters inherited from the
vrpn ForceDeviceServer Uma class. vrpn Phantom Uma performs the haptic
rendering providing force feedback to user through the phantom device. More-
over, vrpn Phantom Uma class provides force feedback data to the remote client
application when any change happens (Fig. 6.3). To do so, a set of methods has
been implemented as detailed in Table 6.2.

The only device-specific class is vrpn Phantom Uma. To integrate a different
force feedback haptic device, a new class has to be implemented with the SDK of
the specific device. The rest of the classes are device independent and can be reused,
in the spirit of VRPN.

6.3.2 Client–Server Communication

Decoupling graphical and haptic rendering enables parting the asynchronous execu-
tion of both systems. On one hand, the client computes the graphical rendering and
shows the graphic scene to the user, providing the auditory and visual stimuli. On
the other hand, the server carries out the haptically render as it has mentioned in the
previous section.

At the beginning of the communication, the client application sets the graphic
scene and creates a vrpn connection to the VRPN server, then sets and sends
haptic scene properties to force device server (see sequence diagram in Fig. 6.4),
firstly by recovering geometry-based information about the objects deployed in the
scene from graphics dedicated buffers using the setObjectNumber, setVertex, and



6 A VRPN Server for Haptic Devices Using OpenHaptics 3.0 79

Fig. 6.3 The force feedback changes are sent from the Phantom Device to the Client Application
through callback invocation

Fig. 6.4 Client–server communication between Client Application and Haptic Device

setTransformMatrix methods detailed in Table 6.1 and, secondly, by defining haptic
effects and force model parameters using the methods setEffect, setHapticProper-
ties, setEnvParameters, setTouchableFace, and setWorkspace. The client application
starts the force effects and the haptic rendering loop and declares a set of callback
functions to enable receiving phantom-based information from the server.



80 M. Cuevas-Rodriguez et al.

During user interaction within VEs, using the Phantom® Device, the client
application receives Phantom-based information attached to tracker, button, and
force device interfaces servers. The force-based information is named by the Force
Callback function in Fig. 6.4 to simplify the scheme; however, all the supported
methods are defined in Table 6.2.

6.4 Application

This implementation has been successfully tested in an industrial case within
the framework of the ManuVAR project [2]. This consisted in the development
of a training simulator for performing metallographic replicas (Fig. 6.5). The
metallographic replica is a non-destructive inspection technique which requires
following some specific steps, including a careful polishing of the surface where the
replica is going to be taken. The simulator includes a wide variety of scenarios where
different objects are rendered. Thanks to the server properties, allowing haptically
render of any geometry, the haptic dimension was incorporated into the scene in a
quick and easy way.

Within ManuVAR, a distributed platform has been developed to integrate
different applications where the connection of any interaction device is location
transparent; furthermore, the computational cost of running these applications is
allocated in various machines.

The proposed implementation using VRPN has also been successfully used in an
experiment where a high number of people tested the simulator to determine which
feedback is most appropriate in that training tool. Everybody agreed with the natural
and real-world feeling due to the haptic sensation.

Fig. 6.5 Application case
using the Phantom-based
VRPN server



6 A VRPN Server for Haptic Devices Using OpenHaptics 3.0 81

An experimental study carried out at the University of Nottingham investigated
the design of augmented feedback for improving virtual reality haptic training
in the performance of a complex inspection task in a real manufacturing case
study [3].

6.5 Conclusion

In this chapter a new VRPN server implementation of force feedback for SensAble®

haptic devices is introduced and described. These new contributions include some
features, not developed in the current distributions of VRPN. Furthermore, the
server provides an easy and efficient way to introduce the haptic dimension in
a virtual scene due to the new developed interfaces that offer the possibility of
introducing any kind of geometry. Haptic Phantom® device contacts with the virtual
geometry and much information about its interaction is reported by the VRPN
server.

The work has been developed within the ManuVAR project, where a modular,
flexible, and location transparent architecture required a distributed connection of
VR devices. All the features described in this chapter have been introduced in that
project providing the required results.

These implementations could be the beginning of a new trend of standardizing
the haptic device integration in virtual environments using VRPN thanks to the
simplicity and modularity of its development.

Acknowledgment The abovementioned research has received funding from the European
Commission’s Seventh Framework Programme FP7/2007–2013 under grant agreement 211548
“ManuVAR.”

References

1. Itkowitz, B., Handley, J., & Zhu, W. (2005). The openHaptics toolkit: A library for adding 3D
touch navigation and haptic to graphics applications. In Proceedings of the Eurohaptics Con-
ference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator
Systems (pp. 590–591).

2. Krassi, B., D’Cruz, M., & Vink, P. (2010). ManuVAR: A framework for improving manual work
through virtual an augmented reality. In Proceedings of the AHFE 3rd International Conference
on Applied Human Factors and Ergonomics, AHFE, Miami, Florida, USA, 17–20 July, 2010.

3. Langley, A., Sharlples, S., D’Cruz, M., Patel, H., Poyade, M., Reyes-Lecuona, A., & Molina-
Tanco, L. Impact of multimodal feedback on VR training for manufacturing manual work.
In Proceedings of the Tenth International Conference on Manufacturing Research (Vol. 1,
pp. 219–224). Birmingham, UK, September 2012.

4. Mac Lean, K., & Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics &
Automation Magazine, IEEE, 15(1), 104–119.



82 M. Cuevas-Rodriguez et al.

5. Mark, W., Randolph, S., Finch, M., Vanverth, J., Taylor, I., & Russell, M. (1996). Adding force
feedback to graph ics systems: Issues and solutions. In Proceedings of the 23rd Annual Confer-
ence on Computer Graphics and Interactive Techniques (pp. 447–452). ACM, SIGGRAPH 96.

6. Massie, T., & Salisbury, J. (1994). The phantom haptic interface: A device for probing virtual
objects. In Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems (Vol. 55, pp. 295–300). Chicago, IL.

7. Taylor, I., Russell, M., Hudson, T., Seeger, A., Weber, H., Juliano, J., & Helser, A. (2001)
VRPN: a device- independent, network-transparent VR peripheral system. In Proceedings of
the ACM Symposium on Virtual Reality Software and Technology (pp. 55–61). ACM. VRST 01,
November 15–17, 2001, Banff, Alberta, Canada.


	Chapter 6: A VRPN Server for Haptic Devices Using OpenHaptics 3.0
	6.1 Introduction
	6.2 Technical Background
	6.3 Implementation
	6.3.1 New Classes Implemented
	6.3.2 Client–Server Communication

	6.4 Application
	6.5 Conclusion
	References


