THE DEVELOPMENT OF A SINGLE STRATEGY FOR THE INTEGRATION OF QUANTITATIVE AND QUALITATIVE DATA TYPES FOR THE PRODUCTION OF DECISION SUPPORT SYSTEMS

Dr Robin Burgess

Robin.Burgess@nottingham.ac.uk

Introduction

- Brief summary of the research
- The case study
- 3 fundamental aspects of the research:
- 1. Strategy Development
- 2. Quantitative and Qualitative Data and its integration
- 3. Decision Support Systems (DSS)
- Summary of findings
- Future applications

The Research

- Importance of quantitative and qualitative data types for the production of DSSs
- Integration of data types
- Application of social sciences and human interpretation towards management tools
- Agricultural management tools
- Generic systems development process flow developed

- Soil-Water management in Tanzania
- Rainwater Harvesting
- Common Pool Resources
- Two study regions with differing topographical characteristics
- Socio-economic considerations, wealth classifications
- Intrinsic knowledge

1. Maswa District.

2. WPLL District

Farm A and B have equal rights to access the water resource from the river.

Non-Property Regime

Farm A is next to the river so can easily tap into the water source and divert the flow of the river to help irrigate the land

State Property Regime

- No single strategy present
- Approaches vary depending on the amount of information presented and how it's been collected
- Dependent on the type of decisions being made and the purpose of the tool
- Logical structure

- Examples:
- Systems development management guide
- The work of Marakas
- Simon's modelSHARES approach
- The Dialog, Data and Models paradigm
- Strategy developed from this research
- (These shall be expressed)

Systems development management guide

•

Simon's Model

SHARES approach as defined by Stroosnijder (2001)

- Qualitative approach to development
- Three phases of development
- 1. Descriptive phase
- 2. Explorative phase
- 3. Planning phase

The 'dialog, data, and models (DDM)' paradigm.

DBMS – database management system,

MBMS – model base management system,

DGMS – dialog generation management system

(Sprague and Carlson, 1982)

Data Base

Model Base

Expansion of the DDM paradigm. To give emphasis to the three important elements of DSS development (Sprague and Watson, 1996).

- Quantitative data looks at collecting numerical data and carrying out statistics
- Impersonal point of view
- Development of relationships and mathematical models
- Various variables and types of analysis can be applied
- Questionnaires, surveys, experimental design
- Beginning...Middle...End

 "there are lies, damn lies, and statistics" (Disraeli)

"I don't have to concern myself with how I'm going to analyse my survey data until after I've collected my data. I'll leave thinking about it until then, because it doesn't impinge on how I collect my data" (Bryman)

- Qualitative research emphasises words
- Concerned with observations
- People centric
- Participant observations, interviews, open questions, document analysis
- Often defined by how it differs to quantitative research

- Tests theories
- Takes place in natural settings
- Helps to give better understanding to the research being carried out
- Adds a new level to the research
- Interactive approach to data collection

- Multi-strategy employs both quantitative and qualitative data
- Assumes the researcher can capitalise on both data type traits
- Very research specific
- Three approaches defined by Hammersley:
- 1. Triangulation
- 2. Facilitation
- 3. Complimentarity
- Implementation plan required

"every research tool or procedure is inextricably embedded in commitments to particular versions of the world. To use a questionnaire, to use an attitude scale, to take the role of participant observer, to select a random sample, to measure rates of population growth, and so on, is to be involved in conceptions of the world which allow these instruments to be used for the purposes conceived'. (Hughes)

- Methods used:
- Questionnaires
- Focus Groups
- GIS
- Participatory Rural Appraisal
- Experimental design
- Existing models
- Statistics
- Observations

- Limitations of these methods include:
- Positionality
- Data sets
- Acquirement of data from Tanzania
- Reliability of model predictions
- Field work
- Feedback from farmers and participants

	Rich	Middle	Poor				
Housing	Built with bricks, roofed with iron sheets with glass windows. Well furnished.	Built with bricks and roofed with iron sheets Poorly finished Not well furnished	Built with poles mud and thatched with grass				
Livestock	Own more than 10 heads of cattle, more than 15 goats	Less than 15 goats Less than 9 heads of cattle	Only chicken				
Food security	Never experience hunger	Sufficient	Food insecure - take single meal a day				
Business enterprises	E.G. run large shops and guest houses. Own gypsum mine and engaged in gypsum trading	Engaged in petty business	Not engaged in business				
Clothes:	Wear expensive clothes	Self sufficient	Poor clothing				
Farm implements	Either own or can pay for tractor services in farm operations	Own/ use none	Own none				
Access to social services	Afford costs of primary education and health service	Afford costs of primary education and health services	Cannot afford costs of primary education and health services				
Access to farm inputs	Use farm inputs	Do not use modern farm inputs	Cannot afford farm inputs				

- A DSS is a system under the control of one or two decision makers
- Assist decision making
- Compliment intrinsic knowledge
- Give rise to what if scenarios and step by step guides
- Generate questions
- Improve awareness
- 2 development phases

P	arameters	Optimi:	se	Paste Mulitple Farrm Inputs					
Use Common Water Resources 🔽				Common	Pool Water (m3)	5000			
9	ingle Farm	Multiple Fa	rms						
	Farm Specil	fication							
		Farm Area	1.000		ha				
	Avera	age Slope	1.000		%				
	Labour	r Available	500.000		Person-days				
	N resources	s available	50.000		kg N				
	CPR Acce	ess Status	80.000		%				

SHI social hierarchy index

SEf is the wealth index, ranging between 1 and 5 that is associated to poverty and wealth respectively. WSEf is the weighing factor. The higher it is more the influential the factor is on the estimation of the Social Hierarchy Index. *i* is the number of socio-economic factors. *n* is the number of farms in the community.

 $Yield_N = Y_{\max} \left(1 - e^{-0.69 \left(N_a / N_b \right)} \right)$

Parameters Optimise Paste Mulitple Farm Inputs Copy Outputs To Windows Clipboard			Paramete	ers Optim	ise F	Paste Mulitple F	arrm Inputs	Сору Оч	utputs					
Use Common Water Resources Common Pool Water (m3) 50000.000			Use Com	mon Water Re	sources 🔽	Common P	ool Water (m3)	50000.000						
Single Farm Multiple Farms			Single Fa	arm Multiple F	arms									
Farm Specification			Farm	Area	Slope	Labour	Nsource	Housing	Livestock	Food Securi	Enterprises	Clothes	Implements	Social S
Farm Area 4.400 ha	-		1	3.2	1.2	702.7	422.1	2	1	1	2	1	2	2
Average Slope 1.700 %	1.000		2	6.5	3.8	711.2	456.1	5	2	3	4	2	5	3
Labour Available 1228.000 Person-days	1.100		3	9.1	1.2	527.3	258.1	3	1	3	4	3	4	4
N resources available 390.000 kg N			4	21	21	433.7	370.3	2	5	1	4	2	3	1
CPR Access Status 1.000 %			-	7.0	0.0	C10.4	202.0	2	- -	4	-	2	4	1
	-	1.	0	7.0	0.5	610.4	303.0	3	3	4	4	2	4	'
			6	1.7	3.1	14/4.8	417.2	2	2	3	5	3	5	4 💌
Farm Characteristics: Area: 4.400 Stope: 0.017 1.28.000 Nitrogen Available: 300.000 Optimal Management Maize Areg(ha) 1.87 Maize Maphication (kg N): 86.321 1.107 Rice N Application (kg N): 86.321 1.107 Rice N Application (kg N): 0.060 1.107 Rice N Application (kg N): 0.000 1.107 Part Applied (m3): 0.000 1.107 Farm Output 0.047 1.108 Cumulative Margin (TAS): 1052837.4 1.108 Margin Range (Intras): 1.162 > 3.444 Production Range (tornes): Maize: 1.642 > 3.444 Production Range (tornes): Flow: 0.030 0.087		1	Farm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19	Area Slop 3.200 1.20 6,500 3.80 9.100 1.20 2.100 2.10 2.100 2.10 7.600 0.30 7.700 3.10 2.700 2.70 3.600 2.40 1.100 2.30 0.800 1.30 6.900 0.60 6.900 1.10 6.600 1.40 6.100 3.70 6.700 2.60 2.700 2.70 3.600 2.40 1.100 2.30 0.800 1.40 6.100 3.70 6.700 2.60 9.700 2.60	e Labour 4 0 702.700 0 711.200 0 527.300 0 433.700 0 1181.40 0 1474.80 0 1474.80 0 554.900 0 554.900 0 1543.00 0 1459.50 0 1556.400 0 1459.50 0 1284.300 0 1459.50 0 1022.60 0 1154.90 0 1363.8100	Available N 422,100 0.5 456,100 0.4 258,100 0.3 370,300 0.2 383,000 0.4 0 417,200 0.3 306,600 0.2 307,400 0.4 124,000 0.2 307,400 0.4 0 124,000 0.2 307,400 0.1 287,800 0.3 0 134,800 0.6 0 314,800 0.9 0 142,000 0.1 0 142,000 0.1 0 142,000 0.1 0 142,000 0.1 0 142,000 0.1 0 142,000 0.1 0 142,000 0.1 120,900 0.0	available 508 58.654 817 59.822 875 45.263 8264 30.616 8133 44.821 908 117.53 8167 96.803 843 30.986 8407 50.467 909 8.903 9144 120.16 961 41.257 867 80.709 937 121.29 978 70.088 916 13.724 949 108.02 950 16.242	Maize Are 0.041 0.058 0.030 0.037 0.037 0.037 0.037 0.047 0.047 0.047 0.047 0.021 0.043 0.043 0.043 0.043 0.043 0.043 0.029 0.029 0.029 0.029 0.029 0.029 0.029	a (ha) Maiz 6.226 1.40 9.090 1.21 4.307 1.03 9.090 1.21 4.508 1.60 27.622 2.49 7.480 2.61 7.480 2.61 7.480 2.61 10.093 0.78 70.021 0.58 9.553 1.13 10.852 3.20 9.553 1.82 6.953 1.82 5.590 1.85 35.590 0.71 12.394 2.98 35.590 0.77 77.834 0.64	e N (kg) 6 9.794 9 15,521 3 7.942 6 6.122 6 8.8000 7 30.102 7 18.178 3 1.711 3 7.400 0 347.350 9 16.767 1 6.667 6 10.870 8 24.334 5 11.601 4 167.810 5 11.5260 3 88.115 5 12.60	Rice Area (I 3747864.3 38642018 2812474.9 2303653.7 2341564.5 7937849.0 6129150.8 23425218 3245231.4 2934526.4 23425218 23425218 20824456 7506522.8 20824456 4391531.5 7654769.6 5730891.6 3033898.7 6522015.8 2005482.6	ha) Rici 16/ 18/ 12/ 10/ 11/ 38/ 26/ 11/ 38/ 26/ 11/ 15/ 12/ 29/ 29/ 29/ 29/ 29/ 29/ 29/ 29/ 29/ 2	e N (kg) 5022.6 189628. 5064.8 194631. 7754.0 142536. 511.3 115952. 8151.0 151883. 1143.3 398044. 1141.3 311275. 1610.8 117328. 9595.7 162873. 9595.8 7 162873. 9595.8 7 162873. 9595.2 3836516. 12315.6 251003. 7952.2 383695. 823.3 288196. 823.3 288196. 823.3 288196. 12332.8 288196. 12352.2 383695. 823.3 288196. 12352.2 383695. 823.3 288196. 12352.2 383695. 12352.2 383555.2 383695. 12352.2 383695.	RWH Ar ~ 7 1.536 3 1.700 0 1.135 2 0.862 0 1.055 8 3.218 1 2.468 6 0.875 4 1.034 8 2.786 9 1.139 4 2.034 8 2.786 9 1.139 4 2.193 1 3.298 3 2.025 2 0.107 3 2.575 6 0.198

- Parameters set for a single farm are via the on-screen options
- Output clearly viewed

- Multiple farms, parameters inputted via importing a spreadsheet
- Results subsequently generated

Run 1	Input a	and output	values				
Farm Characteristics:							
Area:	1	(hectares)					
Slope:	0.01	(slope percentage)					
Labour Available:	500	(person days)					
Nitrogen Available:	50) (kg N)					
Optimal Management							
Maize Area(ha):	0.706	(optimal management options for the two crops)					
Maize N Application (kg N):	36.072						
Rice Area (ha):	0.039						
Rice N Application (kg N):	2.754	. ,					
RWH Area:	0.003	,					
CPR Water Applied (m3):	0	(Additional water)					
Farm Output		(outputs/ranges)					
Cumulative Margin (TAS):	2545318.8		•				
Margin Range (TAS):	70380.4	->	149983.8				
Production Range (tonnes)- Maize:	0.673	-> 1.4					
Production Range (tonnes) - Rice:	0.02	->	0.059				

- Example results from single farm and multiple farm model runs
- Variation viewed in the results
- All variables listed and numerical values assigned

Farm	1	2	3	4	5	6	7	8	9	10
Area	5.5	8.2	9.9	7.8	5.8	1	1.2	3.8	9.1	3.9
Slope	3.4	3.7	0.6	3.8	3.4	0.6	2.4	2.4	2.2	3.6
Labour Available	499.8	1198.3	686.1	1172.8	1015.6	1271.9	1382.1	410.2	1025.6	724.8
N available	403.8	110.4	414.6	151.9	470.6	371.5	233.2	247.1	458	127
Maize Area (ha)	0.309	0.869	0.447	0.725	0.715	0.012	0.014	0.271	0.62	0.544
Maize N (kg)	38.769	99.513	52.451	91.484	86.541	39.02	4.892	32.531	73.271	67.225
Rice Area (ha)	0.062	0.087	0.066	0.15	0.077	0.234	0.322	0.039	0.149	0.025
Rice N (kg)	9.742	10.559	9.021	25.18	10.55	80.566	174.93	6.787	25.171	3.535
RWH Area (ha)	0.854	2.12	1.471	1.975	1.793	0.754	0.862	0.735	1.864	1.277
CPR Water Applied (m3)	11.001	35.718	12.525	11.861	17.996	449.26	192.68	7.977	8.99	11.092
Total Margin	2688693	6494250	3465009.5	6391962.4	5565649.8	2237561	3598655	2206543	5485626	4032076.2
Min. Margin	132105.1	317693.6	137334.7	311139.2	272287.8	75316.8	137313.1	105912.8	264519.6	194831.8
Max. Margin	134632.9	325101.1	178137.7	320454.7	278663.5	132010	195290.2	110779	275374	201998.1
Min. Maize Production (t)	1.105	2.906	1.212	2.598	2.472	0.039	0.059	0.934	2.149	1.869
Max Maize Production (t)	1.105	2.962	1.544	2.598	2.51	0.058	0.07	0.948	2.149	1.929
Min. Rice Production (t)	0.144	0.181	0.108	0.342	0.167	0.476	0.876	0.084	0.331	0.053
Max. Rice Production (t)	0.161	0.193	0.158	0.405	0.184	0.841	1.255	0.107	0.403	0.061

Summary

"Computers are useless they only give you answers"

Load the DSS onto the computer

(Pablo Picasso)

Check the functionality of the DSS by running the system with some test data *

Meet with farmers and ascertain the sort of questions they want answering.
Discuss the capabilities of the tool with them as well. Discuss resource_____
management issues

Data collection. Record and analyse the information. Physical and observational information

Single or multiple farm application of the DSS -----

Input collected data

Run the DSS

Obtain the results from the system and collate these for extrapolation -

**** Meet with the community members to discuss the results

Farmers and community members to digest the results

Formulation of further questions for the extension officers

Questions discussed

Instigate the desired management options

Review

• A successful DSS was produced that fulfilled the requirements set by our Tanzanian Partners

 Various strategies for development were investigated and combined to form a single approach

• The importance of quantitative and qualitative data was expressed

 Potential for combining data types expressed and developed

The Future

PODIUM

Want to help Africa? Then get off their backs

RECAUSE AFRICA looks poor and has weak institutions, we imagine that Africa is weak. We think it needs saving. We like to believe that if we bring our money, our knowledge, our skills to Africa, we can lift it out of its misery. Our strength, wisdom and kindness will lead Africans out of darkness and into a better world - a world like ours.

Richard Dowden From a speech at the Royal Geographical Society by the Director of the Royal Mirican Society

and agencies, the continent. We've tried that - it was called the British Empire approach to Africa is that it has so ston feeduce worth of the second secon not worked. Billions of pounds worth of aid has poured into it on fields of cotton and corn Africo in the past 30 years. I sug-that can be grown fur more gest as a starting point that the cheaply in Africa. Get rid of the even as a samp point teat the category in Arrica. Got not of the development of pooles, at soci- arrivation of the sets, can only be dene by fuses a modery of our proclaimed 19th century. Much of the cale- poole themselves. It cannot be all service had a similar idea done by outsiders. Outsiders keeping Africa goods out of our sets and the set of the caleapproach to Africa and it's quite when Britain and other Euro- can support, but they cannot markets. Allow Africans to earn approximited and a second seco

Rainwater harvesting must be promoted

The landless state of many in Bangladesh adds to their woes, says Renata Rubnikowicz

IT IS hard to believe that a population lives heldow the pow country such as Rongladesh, could have awake problem. If we to make a living growing anything, it would seem to have too much of hew estandit to support engroup. The support

Bangladesh suffers from its very low-lying status. In rural areas just 10 per cent of the oogulation has access to proper lavatory

THANKYOU!

References:

- Anon (1988b). The Systems Development Cycle. Shell publications
- Bryman A and Cramer D (1995). Quantitative data analysis for social scientists. London and New York, Routledge.
- Bryman A (2000). Quantity and quality in social research. London and New York, Routledge.
- Bryman A (2004). Social Research Methods. Second Edition. Oxford University Press.
- Chambers R (1992). Rural appraisal: Rapid, relaxed and participatory. Ids discussion paper no.311
- Creswell J W (2003). Research design: qualitative, quantitative, and mixed methods approaches. 2nd Edition. Thousand Oaks, Calif.: London: Sage publications.
- Hammersley M (1996). The relationship between qualitative and quantitative research: Paradigm loyalty versus methodological eclecticism. In: Handbook of research methods for psychology and the social sciences. Leicester: BPS Books.
- Hughes J (1990). The philosophy of social research. 2nd Edition. Harlow: Longman.
- Loomis R S and Connor D J (1998). Crop Ecology: productivity management in agricultural systems. Cambridge University Press.
- Lovett J, Stevenson S, Kiwasila H (2001). Review of Common Pool Resource Management in Tanzania. DFID Strategy for research on renewable natural resources. Final Technical Report.
- Marakas G M (2002). Decision Support Systems. Prentice Hall.
- Matthews R and Stephens W (2002). Crop simulation models Applications in developing countries. CABI, Wallingford, Oxon.
- Ostrom E (1999). Self-Governance and Forest Resources. CIFOR. Occasional paper Number 20.
- Rwehumbiza F B, Hatibu N, Machibya M (1999). Land characteristics, run-off and potential for rainwater harvesting in semi-arid areas of Tanzania. *Tanzanian Journal of agricultural Sciences*. Vol. **2**, No. 2
- Simon H A (1960). The new science of management decision. Harper and Row Publishers.
- Sinclair T and Seligman N (1996). Crop modelling: From infancy to maturity. Agronomy Journal. 88(5): 698-704
- Sprague R H and Carlson E (1982). Building Effective Decision Support Systems. Englewood Cliffs, N.J.: Prentice Hall, New Jersey.
- Sprague R H (1980). A framework for the development of decision support systems. *Management Information Systems Quarterly*. 1-26.
- Sprague R H, Watson H J (1996). Decision Support for Management. Prentice Hall, New Jersey.
- Stevenson G (1991). Common property economics: General theory and land use applications. Cambridge University Press.
- Stroosnjder L, van Rheenen T (2001). Agro-Silvo-Pastoral Land Use in Sahelian Villages. Advances in geoecology. 33.

Dr Robin Burgess robin.burgess@nottingham.ac.uk