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Abstract

Today, energy simulation tools (ESTs) are readily available being utilised to assist
designers (and builders) in achieving energy efficiency targets and fulfilling code
regulations. Likewise, the United Kingdom (UK) government recommends the use of the
Standard Assessment Procedure (SAP) for energy rating of dwellings. In order to
facilitate the assessment procedure, the National Energy Services developed a SAP-
based simulation software tool called ‘NHER Plan Assessor’. Despite the usability, or
ease of application, its accuracy tends to be questioned in view of the limited sources of
energy use and climatic condition applied to SAP simulation. Today, a number of similar
tools are applied around the globe—e.g. Passive House Planning Package (PHPP) and
HOT2000. Unlike the UK’s SAP simulation tool, PHPP and HOT2000 have widely been
applied to domestic energy simulation beyond their countries of origin—i.e. Germany
and Canada, respectively. This study was aimed mainly at demonstrating a way to
compare the usability of these ESTs in the design decision-making process. The
comparative performance study was carried out using an existing housing prototype
called ‘ZEMCH 109’ in Prestwick, Scotland. This paper identifies the significance of
ESTs’ information management, agility and adaptability and the correlation to the design
decision-making stages, which affect the energy performance of housing. Further
investigation on the application of weight evaluation approaches to criteria identified was
recommended in this study.

Keywords: Housing energy simulation tools, NHER Plan Assessor, PHPP, HOT2000,
design decision-making process.



Introduction

The drastic acceleration in the population growth and the life expectancy along with the
highly increased energy consumption per person has generated the continuous rise of
energy demands(Edwards and Hayett 2001).Consequently, the world has been suffering
from fuel poverty (Boardman 1991). This is to some extent reflected by the constant
increase of energy costs. Clegg (2007) articulates that the necessity for reduction of not
only energy consumption, but also greenhouse gas emissions including carbon dioxide
(COy), which contributes to raising environmental issues, such as global warming. Thus,
the link between energy use, CO,emissions and global warming is inextricable. In order
to mitigate global warming, the ‘Kyoto Protocol’ was introduced in Kyoto, Japan, on 11th
December, 1997, linked to the United Nations Framework Convention on Climate
Change (Breidenich, Magraw and Rowley 2013). This protocol set targets for reduction
of CO, emissions and agreed sanctions for those who fail to meet the targets.
Consequently, Scotland is planning to reduce its CO, emissions by 80%by 2050in
reference to the 1990levels,having an interim target to reduce the emissions by at least
42% by 2020 (The Scottish Government 2012). The residential sector was responsible
for around 24% of UK greenhouse gas emissions in 2011, with 15% (74 million tonnes)
of all CO, emissions (Department of Energy & Climate Change 2013). Therefore, the UK
government (excluding Scotland today) has implemented the ‘Code for Sustainable
Homes’, which is an environmental assessment method for rating and certifying the
performance of new homes (Communities and Local Government 2010). The ‘European
Union energy label’ is another environmental performance standard implemented in
European Nations including the UK (Department for Environment, food and Rural Affairs
2013). It is a legible colour scheme that ranks products’ energy saving levels with the
aim to encourage consumers towards the energy efficient choice.

‘The Government’s Standard Assessment Procedure for Energy Rating of
Dwellings’(SAP) is a system adopted by the UK Government as the method of
calculating the energy performance and CO, emissions of self-contained dwellings (of
any size and any age) and it is based on the energy costs associated with: space and
water heating, ventilation and lighting (BRE 2011). SAP can be utilised at both initial and
final stages of design decision-making. The following section revisits general meanings
of the housing design decision-making process.

Housing Design Decision-making Process

The housing design is based on a methodology, which helps the designer to understand
how to proceed from the past and present to a forecast of the future (Brawne 2003). This
process involves ideas and information, which require successive looping steps or
stages and each aims to achieve more resolution than the previous one (Pressman
2012). Pressman (2012) states that the cognitive elements of design process may be
viewed as follows:

e Problem definition: it includes functional requirements and relationships in
qualitative and quantitative terms. Project budget, time schedule and objectives
are those that can be considered to be part of the concerns.

e Information gathering: it aims to examine project precedents, construction
techniques and identifies applicable codes and regulations as well as the site
conditions.

e Analysis: it is a process to evaluate the problem identified and aims to trigger
design ideas translating the project data into graphic representation.

e Systematic to diagrammatic schemes: this is the step to establish design
concepts and strategies aiming to develop the project programme related to the



site conditions, circulation patterns, environmental impacts and design
aesthetics.

e Schematic design development: this process intends to convert design concept
strategies into the experience of the building in question. It includes the selection
of building materials and systems as well as construction technologies and
performance.

e Soliciting and responding to critical feedback: it is a step of continuous
improvement for the design solutions towards the project resolution.

These cognitive elements of design process can simply fall into the following stages:

Early conceptual design stage: this is an explorative phase (Xu, Hendrickson and
Hettwer 2006). It encompasses design organisation techniques such as brainstorming,
flow charts, modelling and sketching to help visualise the conceptual design (Brawne
2003). The aforementioned problem definition, information gathering, analysis and
systematic to diagrammatic schemes elements may be included in this stage.

Final design detailing stage: it is characterised by verifying design solutions through a
feedback loop that aims to fulfil the project’'s demands and requirements (Angelil and
Hebel 2008). This stage may include the aforementioned schematic design development
and soliciting and responding to critical feedback elements.

To examine the building energy performance, ESTs tend to be applied at the final design
stage alone today. However, in order to make proper design decisions towards energy
efficiency in building, ESTs should be utilised at the early conceptual design stage as
well (Hayter, Torcellini and Hayter 2001). Moreover, ESTs can also contribute to
securing thermal comfort at optimal operating energy costs.

Housing designers (and homebuilders) are relatively familiar with environmental issues
arising today and they have begun to approach the building simulation field (Attia,
Beltran and De Herde 2009). However, seemingly, they tend not to comprehend how to
incorporate the simulation results into a proper design decision-making process,
although ESTs are adequate to support early stage design decision-making
(Bambardekar and Poerschke 2009). With the intention of facilitating the SAP
assessment procedure, the National Energy Services developed an EST called ‘NHER
Plan Assessor’. The software is recognised by the UK government for assessing the
energy efficiency of new-build homes and it is approved for issuing Energy Performance
Certificates (National Energy Services 2013). The aim of this study is to investigate
strengths and weaknesses of this SAP based software and its usability in the housing
design decision-making process. In order to identify the aforementioned strengths and
weaknesses, this study compares NHER Plan Assessor with two different ESTs selected
— i.e. Passive House Planning Package (PHPP) and HOT2000. These tools were
selected because of their similarities with NHER Plan Assessor. These two tools are
widely recognised worldwide being utilised to verify the delivery of energy efficient
homes called ‘Super-E’ and ‘Passive house’.

Energy Simulation Tools Selected

NHER Plan Assessor: it is the EST developed by the National Energy Services to
facilitate the SAP (National Energy Services 2013). It is specifically designed to cover
the energy rating of dwellings in the UK. The EST is inapplicable to the energy rating of
dwellings outside the UK. The version used for this study is the NHER Plan Assessor
version 5.4.2.



The NHER Plan Assessor data can be exported into Excel or XML format (National
Energy Services 2013). The simulation result scan instantly be showed on the computer
screen and the data can be processed into SAP sheets that are used for verification by
building authorities (Fig.1).
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Figure 1: NHER Plan Assessor input interface and result output

This EST is characterised by user-friendly interface and the use of a traffic light colour
system, errors and missing data facilitate the operation (Fig.2).
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Figure 2: NHER Plan Assessor interface showing the traffic light system to detect errors



The key strengths of NHER Plan Assessor were identified as follow:

A regularly updateable product library for heating and ventilation systems.
User-friendly interface.

Established default component options.

Instantly signalled error notification.

The weaknesses were:

Limited energy sources applied to the calculations.

Inapplicability to housing outside the UK.

No interactive graphic images that instantly visualise the energy use profile.
No heating and cooling load estimates in addition to the energy demands.

Passive House Planning Package (PHPP): It is the EST created and operated by the
Passive House Institute, applied mainly for verifying domestic and non-domestic
buildings in European countries today as ‘Passive houses’ (Passive House Institute
2012). This certificate refers to the voluntary energy efficient buildings that reduce its
ecological print. This study utilised the PHPP version 7. PHPP requires Microsoft Office
software to be able to run, because it is based on an Excel worksheet (Fig. 3).
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Figure 3: PHPP interface based on an Excel worksheet



The PHPP interface combines input and output in the same worksheets, which facilitate
interaction between the data input and the graphical representations (Fig.4).
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Figure 4: PHPP monthly heat loss profile

The key strengths of PHPP were identified as follow:

Use of widely applied MS Excel worksheets.

Interactive graphic images that instantly visualise the energy use profile.
High level of customisability.

Global scale applicability.

Heating and cooling load estimates in addition to the energy demands.

The weaknesses were:

e No error signal representations.
e Lack of menus with default component options.

HOT?2000: It is the EST that was developed by the Canadian government with the aim to
measure the housing energy efficiency (Canada 2013). R-2000 and Super-E homes are
verified using this tool nationally and internationally. This study utilised HOT2000 v10.51,
which is downloadable for free of charge unlike PHPP and NHER Plan Assessor.

The interface includes multiple choices of default component options and/or user direct
input and this helps increase the level of accuracy (Fig.5). Furthermore, HOT2000
interface contains a large number of simple illustrations that also allow the users to
choose the default options so as to mass-customise the configurations and simulate the
energy consumption (Fig.6).
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The key strengths of HOT2000 were identified as follow:

A large number of default options accompanied by illustrations.

Error reports.

Global scale applicability.

Heating and cooling load estimates in addition to the energy demands.

The weaknesses were:

¢ No interactive graphic images that instantly visualise the energy use profile.
¢ Complexity in bespoke user input.

This study consists of testing the usability of selected ESTs by making use of a housing
prototype proposed in Prestwick, Scotland. Afterwards, in consideration of literature
reviews, evaluation criteria were proposed with the aim to compare the ESTs and
identify the levels of usability. The following section describes the housing prototype in
question.

ZEMCH 109

This study selected a housing prototype proposed NRGStyle in partnership with the
Mackintosh School of Architecture and it was intended to be built in Prestwick, Scotland,
which falls into a cool climate region (Figs.7&8). It was planned to be a “Zero Energy
Mass Custom Home” (NRGstyle 2013). The prototype encompasses a number of
passive design techniques as well as advance renewable energy technologies. The
application of a passive design approach to housing contributes to operating energy
savings which in turn affect the costs (Williams 2012).

Figure 8: ZEMCH109 site



The design parameters taken to test the selected ESTs are as follows:

Latitude: 55-30N, longitude: 004-35W, elevation: 20 m.
End terrace house.

3 storeys.

Rectangular plan.

South-east and north-west elongated facades.
Family structure: 3 adults and 2 children.

1 extract fan in the kitchen and 2 fans in restrooms.
Ventilation air change rate of 0.60 h™.

No mechanical ventilation heat recovery system.
Econoflame main gas boiler with 88.9% efficiency.
113 litter hot water tank.

25 mm foam insulation material over pipes.

No cooling mechanical system.

Gas cooker.

1 dishwasher

1 washing machine.

1 tumble dryer.

1 refrigerator.

100% CFLs with an average power of 11W per bulb.

Furthermore, as-designed U-values of building components applied to the house are
described below (Table 1).

Table 1: Proposed U-values of building materials applied

Building Components U-values
(W/m?K)
External wall 0.14
Sealed solid party wall 0.00
Warm roof 0.13
Slab on grade floor 0.15
Windows 0.80
Entrance door 1.20

The EST assessment result of delivered energy consumption is tabulated below (Table
2).

Table 2: Assessment results of selected energy simulation tools

Delivered Energy
Consumption

(kWh/year)
NHER Plan Assessor 10,371.77
HOT2000 11,473.20

PHPP 12,166.77




Comparative analysis of ESTs selected
Contemplating the aforementioned ZEMCH 109 design parameters, the selected ESTs
were compared using the following criteria proposed in view of the literature reviews:

e Information management: it is an evaluation category that aims to rate the level
of management for entering, processing and presenting data (Attiaa, Hensen and
Beltran 2012).

e Agility: it is an evaluation category that aims to rate the tools’ capability for the
prompt response to the parametric changes required for interactive design
decision-making.

e Adaptability: it is an evaluation category that aims to rate the level of allowance
to flexibly adapt the design parameters that help assess energy and
environmental performance.

Based on the evaluation criteria proposed, as described above, the usability of each EST
selected was analysed in a comparative manner. The assessment extended
subcategories in view of the data input method—i.e. defaults and user input. The
denotation of each is described below:

D: Default input.
U: User input.

Moreover, to evaluate each category, the following scale was used:

0: Not applicable.

1: Minimum level of inclusion.
2: Medium level of inclusion.
3: High level of inclusion.

The assessment results of the ‘Information Management’ category can be found below
(Fig.9 and Tables 3&4).
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Table 3: Information management comparison table summary

Information management

Summary

NHER
PHPP
HOT2000

Friendliness | 12 | 11
Interface | 17

Output | 6 6 4
Level of default input | 30 | 20 | 23
Level of customisability in operation | 5 4 6

[N
w

~
=
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Table 4: Information management comparison table

Information management

Building Energy Simulation Tool

NHER
PHPP

Criteria

Friendliness

Use of different types of metrics

User need of environmental background knowledge

User guide and/or tutorial

Provision of calculation flow diagram

Software include a sample file

Facility to change entries

Undo/redo tool

Default options accompanied by illustrations

Friendly help menu

Interface

Error Diagnostic

Input presentation

Control and navigation

Mapping internal data

Output

Inclusion of energy cost estimates

Flexible selection of output data

Quality and quantity of instant result graphics

Mapping results
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The assessment results of the ‘Agility’ category can be found below (Fig.10 and Tables

5&6).
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Table 5: Agility comparison table summary
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T
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:c—? Libraries | 20 | 6 | 16
Output 4 8 2
TOTAL 40 | 26 | 35
Level of default input | 31 3 25
Level of customisability in operation 9 23 | 10




Table 6: Agility comparison table

| o] 8

Building Energy Simulation Tool "f % o

z o @)

T

Criteria DU[D|U|D|U

" Weatherdatainput [ 3 |1 |11 /2 |1

IS Building planand type |2 |0 |0 |1 [2 |0

‘é Number and characteristics of occupants |0 [0 |11 ]3| 0

S Thermal massinput [2 |2 [0 [2 ]2 |1

5 é Building serviceinput |2 |01 |2 |2 |1
o Thermal bridgeinput | 3(1]0/2 3|0
< Materials for building envelope |3 |1 |01 ]2 |1
% Ventilation products | 3 |1 [0 |1 |2 |1

'% Heatingsystems [3 |1 (0|12 |1

_-g Cooling systems [0 |0 |0 |1 |21
Domestic hot watersystems [3 |10 |11 |1

Renewable energy technologies | 3|1 (0|1 |1 |1

5 Energy consumption and CO2 emissions |2 | 0] 0]|3]|1|0

%‘ Instantresults [0 |0 |0 |2 |0|0

O Notice for regulation compliance [2 |0 [0 |3 |0 |1

The assessment results of the ‘Adaptability’ category can be found below (Fig.11 and
Tables 7&8).
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Figure 11: Adaptability comparison chart




Table 7: Adaptability comparison table summary
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PHPP

HOT2000

Building envelope
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Domestic systems
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Level of default input

16
33
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51
11
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w [ O

Level of customisability in operation

12

40

N
o

Table 8: Adaptability comparison table

Building Energy Simulation Tool

Criteria

NHER

PHPP

Adaptability

Building envelope

Wall characteristics including U-values

Roof characteristics including U-values

Window size and location

Window glazing and framing

Door characteristics including U-values

Building envelope colour selection

Window inclination

Thermal zone differentiation

Basement types

Domestic systems

Air permeability

Ventilation

Heating systems

Cooling systems

Domestic hot water systems

Manipulation and description of Renewables

Building service load distribution
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In view of the aforementioned evaluation criteria, the assessment results of the ESTs
selected were compared. In order to help grasp the outcomes at a glance, a comparative
diagram was developed as follows (Fig. 12). In the light of the information management
criterion, NHER Plan Assessor reached the highest level among the selected ESTSs,
while PHPP was considered to be the lowest. Regarding the agility criterion, the same
tendency was observed. However, PHPP achieved the highest level in terms of the
adaptability criterion, while NHER Plan Assessor was estimated at the lowest.

Information management

M

50
—— NHERPlan Assessor

---- PHPP 1 45
------- HOT2000

35

30

25

25
30
35
40
45
50

Agility Adaptability

Figure 12: Selected ESTs summary comparison chart

Conclusions

The high level of the information management criterion studied may facilitate housing
designers with or without environmental design experience to use energy simulation
tools (ESTs) for the assessment of energy efficiency performance during the design
decision-making process. The agility to use ESTs permits the completion of the
assessment in a short period of time and this allows the users to examine different
design alternatives. The choice of design alternatives affects housing energy efficiency
performance; therefore, it is preferred to be carried out at the early design decision-
making stage. The applicability of the tools to worldwide contexts may be desirable to
accommodate a wide range of projects around the globe. Moreover, the high level of the
adaptability (and customisability) somewhat links to the accuracy of energy simulation. In
fact, the energy simulation of the ZEMCH 109 housing prototype demonstrated indicates
that the estimate using PHPP, which was rated at the highest level of adaptability,
resulted in the largest delivered energy consumption (12,166.77 kWh/year). On the other
hand, HOT2000 with the second highest level of adaptability followed the PHPP
(11,473.20 kWhlyear), while NHER Plan Assessor with the lowest adaptability level
came into the third place (10,371.77 kWh/year). Nonetheless, the accurate simulation



may be relevant to the definitive selection of housing components that needs to be made
at the final design and purchase decision-making stage.

This study was aimed mainly at demonstrating a way to compare the usability of ESTs in
the design decision-making process. However, each project and stakeholder may have
different viewpoints, needs and desires. Accordingly, some weight evaluation approach
to criteria identified in this study should be incorporated in order to accommodate the
diversity of housing projects. Therefore, the EST assessment model demonstrated in this
paper may need to be studied further.
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