
 1 

Domestic laundering – environmental audit in Glasgow with emphasis on 

passive indoor drying and air quality  

C D A Porteous1, T R Sharpe1, R Menon1, D Shearer1, H Musa1, P H Baker2, C Sanders2, P A 

Strachan3, N J Kelly3 and A Markopoulos3 

1: Mackintosh Environmental Architecture Research Unit (MEARU), Mackintosh School of 

Architecture, The Glasgow School of Art, 167 Renfrew St, Glasgow G3 6RQ; Tel. +141-353-4657 

Principal Investigator: Prof Colin Porteous c.porteous@gsa.ac.uk (corresponding author);  

Co-investigators: Dr Tim Sharpe t.sharpe@gsa.ac.uk; Rosalie Menon r.menon@gsa.ac.uk; 

Donald Shearer d.shearer@gsa.ac.uk; Senior Research Assistant: Dr Haruna Musa 

H.Musa@mmu.ac.uk. 

2: Centre for Research on Indoor Climate & Health (RICH), Glasgow Caledonian University  

Co-investigators: Dr Paul Baker Paul.Baker@gcu.ac.uk; Chris Sanders C.H.Sanders@gcu.ac.uk. 

3: Energy Systems Research Unit (ESRU), University of Strathclyde 

Co-investigators: Dr Paul Strachan paul@esru.strath.ac.uk; Dr Nick Kelly 

<nick@esru.strath.ac.uk>; PhD student: Anastasios Markopoulos 

<anastasios@esru.strath.ac.uk>. 



 2 

Domestic laundering – environmental audit in Glasgow with emphasis on passive indoor 

drying and air quality 

Abstract 

As the UK and Scottish governments aim for zero-carbon housing, with tightly sealed building 

envelopes becoming paramount, indoor air quality (IAQ) and its implications for health has 

become a concern. This context relates to the reported findings of a 2008-2011 study, 

‘Environmental Assessment of Domestic Laundering’, concerning the prevalence of passive 

indoor drying (PID). Assessment of PID impacts, shaped by built and social context including 

occupants’ habits and trends, draws on monitored data from 22 case studies out of a wider 

survey of 100 dwellings in Glasgow. The smaller group included analysis of air samples, and 

provided scenarios for enhanced dynamic modelling via laboratory work on moisture buffering. 

The evidence suggests PID has important implications for energy consumption and IAQ; in the 

latter case because moisture levels are likely to boost dust mite populations and concentrations 

of airborne mould spores. Thus findings suggest possible negative impacts on health. Further 

work concerning VOCs and laundering is also advocated. The paper concludes by 

recommending amended building standards allied to design guidance for improved practice; 

these aiming to prevent PID moisture diffusion within habitable rooms by upgrading minimum 

requirements, and also to require enhanced outdoor drying facilities.  

Keywords: domestic laundering; dust mites; energy; health; indoor air quality; mould spores 
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1 Introduction 

The overall research aim of the study ‘Environmental Assessment of Domestic Laundering’ 

(EADL) was to investigate the energy use and other potentially detrimental environmental impacts 

that are attributable to domestic laundering, and to develop recommendations to address and 

improve both aspects. The part played by laundering appliances in this regard has been 

addressed elsewhere [1]. This paper concentrates on the impact of passive indoor drying (PID), 

and to a lesser extent ironing, has on both on indoor air quality (IAQ) and energy efficiency. The 

research investigated several interactive research strands: humidity, mould risk, PID influences 

and standards of IAQ using CO2 to indicate ‘bad company’; air sampling and analysis of mould 

spores; moisture buffering potential of certain building materials, involving laboratory analysis; 

and dynamic computer modelling to determine moisture and energy impacts of PID. These 

strands connect to potential health issues associated with IAQ and humidity – e.g. asthma 

(addressed theoretically relative to moisture levels and presence of airborne mould spores). The 

issue of volatile organic compounds (VOCs) lay outside the remit of EADL. 

Social rented housing in Glasgow was used as the main investigatory vehicle for two reasons. 

Firstly, it targets the greatest need and risk in terms of low income relative to laundering loads, 

and corresponds with high intensity of occupation over daily and weekly cycles. Secondly, there 

was good accessibility, with previous involvement by the research team. However, some private 

sector homes were included, and, despite the dominance of various types and ages of urban 

Glasgow flats over more suburban forms, the demography and findings are deemed relevant and 

transferable to all housing sectors and beyond Scotland [1].  

This paper confines itself to those aspects of the research objectives that relate primarily to the 

influences of PID on IAQ and possibilities for mitigation: 

(i) To evaluate these influences in varied house types and demography, in terms of the balance 

between energy efficiency and good air quality, related problems such as condensation risk, and 

associated health implications.  

(ii) To measure and improve knowledge of transient, moisture-related properties of relevant 

materials, surface finishes, furniture, etc. To also augment (i) by analysis of air samples.  
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(iii) To extract performance metrics for the design variables studied, based on scenarios from (i) 

and material tests in (ii) and to generate a theoretical framework enhancing the capabilities of 

ESP-r [2] to dynamically model transient moisture transport. 

(iv) To influence housing procurement, aiming for improved statutory standards and disseminate 

a design guide detailing best practice.1  

The context for EADL was outlined by Porteous [3] who provided a historic review of IAQ and its 

influence on energy and health. Despite the lengthy build-up of knowledge between Dalton’s early 

19th C work on dew-point and mid-20th C capability to carry out a full constructional analysis of 

condensation risk, mould growth continues to be problematic within housing. This is in part due to 

the drive towards energy efficiency at the apparent expense of IAQ. The review also notes that 

the 19th C standard of 1,000 ppm CO2 endures today as a desirable maximum indicator of IAQ, 

despite significant socio-cultural changes. Similarly, the core method of air sampling and analysis 

dates from the 1880s [4] and remains a relevant precedent for equivalent data from EADL. 

21st C research by Shove prior to EADL challenged the likelihood of effective intervention relative 

to changing human behaviour and lifestyle “outside the field of view” [5]. Shove documented long-

term social changes concerning domestic laundering within the topic ‘comfort, cleanliness and 

convenience’ [6; 7] – e.g. citing scripts “written into …domestic washing machines and into the 

co-requisite sociotechnical arrangements (closed windows, machine washable clothing, etc.)”. 

Here, she relies on indirect data from Unilever interviewees, and appears to neglect PID, 

comparing tumble-drying to external line drying only. Household habits, including those relating to 

domestic laundering, are also summarised in recent Swedish work [8], using 31 dwellings of 

German Passivhaus standard. Contemporaneous UK work on patterns of domestic energy 

consumption argues that multi-disciplinary research is required to interpret and act on highly 

variable and context-dependent findings [9]. Another Swedish study relates three specific family 

circumstances to the efficiency and energy consumption of washing and drying, the latter split 

between machine drying and PID [10]. Work on the health risk associated with Passivhaus-

standard dwellings in the Netherlands  [11] acknowledges PID as problematic and suggests 

alternative drying methods such as covered outdoor areas or special rooms. 



 5 

The overall significance of occupants’ traits and habits with respect to IAQ and energy efficiency 

has been increasingly brought to the fore. Work in Denmark [12] highlights the issue of opening 

windows and adjusting set points on thermostats in response to perception of warmth and the 

perceived ambient environment. However, PID does not figure in this appraisal. Similarly, an 

earlier Danish study investigated IAQ via exposure-response relationships for emissions from 

building products, but not for portable items introduced through recurring events such as PID [13]. 

Work on perceived air quality and materiality (organic vs. synthetic building materials) suggests 

that a fragrance perceived as pleasant will give higher odour acceptability [14]. The latter raises a 

question as to whether fragrance from detergents and additives would raise or lower odour 

acceptability. Although such issues have been cited within larger reports [15], PID and its 

influence on energy efficiency and IAQ remains under-investigated. This is the context that 

justified EADL, and within it, examination of PID – the reasons for its prevalence and its impacts. 

2 Method 

A survey of 100 households in Glasgow was conducted (S100). These embraced both 

demographic and architectural variety, with an ‘interview-observe-measure’ survey process 

carried out in differing weather over a calendar year. This consisted of a comprehensive 

questionnaire, subject to observational checking and additional research by the investigator (e.g. 

relevant architectural information), and measurements of temperature, relative humidity and CO2 

(maximum 5,000 ppm) in order to provide a ‘snapshot’ of found conditions during daytime; and for 

later comparison with continuous measurements over a 2-week period for a smaller cohort of 

dwellings from the main set. The three environmental parameters were recorded with an Eltek 

(Cambridge, UK) GENII Telemetry Transmitter GD-47, and vapour pressure was subsequently 

computed as a measure of absolute humidity, partly for comparison with CO2 readings. 

The questionnaire was devised to capture relevant contextual information together with specific 

laundering data. Some queries aimed to establish operational reasoning as well as views 

concerning perceived problems. Objective context included: type of dwelling, number of 

bedrooms, family make-up, intensity of occupation on weekdays and weekend; basic 

construction, floor finishes and furnishing; heating means and operation, methods of payments 
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and estimated costs; and ventilation means and operation and any visual evidence of mould. 

Laundering data included: individual appliances for washing, drying and ironing, operational 

frequency, load settings, detergent types etc. and reasons for use partial use or non-use; use of 

communal appliances, reasons for this and location; special emphasis on means of drying – 

where when and why for PID, passive outdoor drying (POD), and tumble drying  (TD); individual 

and communal split, and, in the former case, associated heating and ventilating habits, and 

perceptions of indoor humidity. 

Although the scope of EADL did not extend to health outcomes, the methodology aimed to 

establish presence of indicators that other work has already shown to be relevant to aspects of 

health (e.g. humidity, dust mite population and asthma). The energy-IAQ balance is delicate, and 

the data acquisition and subsequent analysis aims to explore the environmental vulnerability of 

increasingly airtight building envelopes coupled with relatively unstructured control of ventilation. 

In the sample in Glasgow the extent to which dwellings were insulated and airtight was not 

compliant with current standards, and airtightness depended mainly on double-glazed windows 

(not measured, but self-evident relative to age/type of properties). User awareness of ventilation, 

and the means or lack of its control, was a key issue alongside that of heating and relevant habits 

and routines associated with laundering. The essential sociological context was also elicited, 

including economic and practical constraints and the motivations behind routines and habits that 

related to physical outcomes that might involve, or impinge on, laundering processes.  

Twenty-two case studies (S22) were volunteered from S100, and data collected in these over a 2-

week period. This included the same environmental variables (equipment as described above for 

S100; with sensors located to avoid extraneous thermal influences), plus measurement of power 

consumption by appliances where possible. Householders’ diaries of laundering activity and other 

relevant habits augmented these data. Since findings relating to appliance use have been 

separately published [1], this paper concentrates on measured and modelled consequences of 

PID relative to energy usage and humidity, and associations between IAQ and humidity. 

Key constructional finishes found in S100/S22 were subjected to laboratory analysis in order to 

quantify their ability to function as moisture ‘buffers’ in varying conditions. These findings then 

enabled an enhanced database of properties for use in dynamic computer modelling. Only 
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summarised aspects of such test data and modelling are given here. Air sampling and 

microbiological analysis was also undertaken in S22 – firstly to determine the overall 

concentration of mould spores in the air in each main room/space, and secondly to analyse 

presence or absence of particular mould isolates in each dwelling.  Both the overall 

concentrations and prevalence of isolates could then be compared with prevalence of PID in 

order to establish any indications of consistent associations. 

Duplicate air samples, using SAS super 180TM, one with malt extracts agar (MEA) and the other 

with potato dextrose agar (PDA) as the medium for microbiological identification, were taken in 5-

6 spaces within each home when setting up sensors and equipment (living room, bedroom(s), 

hall, kitchen and bathroom between 9.0 a.m. and 12 p.m.). Occupants were advised to adopt 

normal indoor routines before and during the sampling. Plates were incubated at 23ºC for four 

days or until visible growth appeared; thereafter counted and corrected for statistical possibility of 

multiple particles passing through the same hole according to manufacturers’ guidance. The 

concentration of colony forming units (CFUs) per cubic metre of sampled air is found by: 

 

X = Pr x 1000/V (CFU/m3)        (1) 

where V = volume of air sampled (litres); Pr = probable count obtained by positive hole correction 

of r = CFUs on plates.  

 

Isolates are later sub-cultured on to MEA and PDA for further identification – in some cases to 

species level and in others only to genus level, based on growth and colony characteristics on 

media plates and microscopic examinations as described by Samson et al [16]. 

Thereafter, bearing in mind the size of the sample of 22, the CFU/m3 is considered as the 

dependent variable – firstly the arithmetic mean of all five spaces (or six if two bedrooms); 

secondly the arithmetic mean of living rooms and bedrooms, which were most commonly used for 

PID. The independent variable (IV) was based on the presence or absence of PID, classified 

within four categories: tumble drying dominant or only method used (IV1:TD); outside drying 

dominant (IV2:POD); PID dominant (IV3:PID); and a relatively equal mix of methods (IV4:mix). 
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Paying due regard to a comparable study in France [17], nine other ‘confounding’ variables were 

analysed: a) season in 3-month periods (winter: December to February; spring: March to May; 

summer: June to August; autumn: September to November); b) level of window opening (frequent 

opening, moderate opening and generally shut); c) presence or absence of extract fan in kitchen; 

d) ditto in bathroom; e) main floor finish (carpet, laminate or timber); f) presence or absence of 

house plants; g) type of heating (electric or gas); h) density of occupation (number of occupants ÷ 

number of apartments, where an ‘apartment’ is a bedroom or living room); and i)  floor level 

(ground up to 16th). 

Evidence of an association between concentration of CFU/m3 and visible presence of mould was 

also explored in the analysis, as was evidence of associations between moisture levels – relative 

humidity (RH) and absolute humidity (AH) given by vapour pressure (VP) – and mould and/or 

CFU/m3. Associations between CO2 as the indicator of IAQ and moisture levels was also checked 

over daily cycles, together with presence of PID and moisture levels, using information from 

diaries, and cross-checking with measurements of power consumption by washing machines. 

Dust samples were not collected, the aim rather to use measured moisture and temperature as 

an indicator of potentially large dust mite populations. 

3 Results 

3.1 Housing provision 

The varying characteristics of a wide range of housing types influences the diversity of drying 

methods adopted.  PID was prevalent, but generally lacked effective means of isolating and 

exhausting moisture, mould spores and any associated VOCs (not included in EADL). Many of 

the S100 respondents perceived drying as a problem or issue. 

There was a paucity of dedicated indoor drying spaces, utility rooms or other suitable places for 

PID. Only four S100 respondents had drying cupboards in use. Two of these had vents fitted and 

one mechanical extraction; a combination boiler and hot service pipes helped to heat another 

(naturally ventilated); and one respondent whose space had no vents and no heating perceived a 

build-up of smells inside it. The declared time for drying by each respondent was lengthy at 24 

hours, but this probably reflected the time clothing was left hanging rather than that needed for 
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drying. Most of the dwellings surveyed could be adapted to provide a suitable drying cupboard, 

sometimes by restoration to original use. Another five had conservatories or sunspaces used for 

drying, while sixty-eight declared ‘no’ to this question (73% S100 responded). Only one 

respondent identified a designated utility room, seventy declaring ‘no’. No respondent had more 

than one such suitable indoor drying space, and the total number of cupboards, sunspaces and 

utility rooms was 10% of S100. Only half of the respondents declared access to outdoor or 

covered semi-indoor drying, and, of those, almost half indicated drawbacks including lack of 

security and lack of line-space. Again, there is scope for improving existing provision. 

3.2 Environmental context  

The context as found in the sample militates against PID and ironing. The coexistence of poor air 

quality and high moisture levels indicate poor ventilation control relative to intensity of occupation, 

with high ambient humidity an added, partly seasonal, factor. 

The initial daytime ‘snapshot’ readings for S100 households indicated environments that cannot 

readily accommodate additional moisture inputs from laundering activities. Table 1 highlights that 

vapour pressure (VP) averages for each room are above desirable maxima in terms of dust mite 

growth of 1.13 kPa or 7g/kg mixing ratio [18; 19]. Correspondingly, averages are mainly above 

the ‘critical equilibrium humidity’ (CEH) [20; 21; 22], a curve with RH as a function of temperature. 

The CO2 averages also give cause for concern and indicate that it is possible, and perhaps likely, 

to under-ventilate dwellings that are not particularly airtight; noting that 1,000 ppm CO2 

corresponds with the UK CIBSE Guide, 1986, standard of 8 l/s for each occupant present [23]. 

Table 2 shows that VP means for living rooms and bedrooms are higher for S22 monitored over 

two weeks, despite a seasonal shift of emphasis from winter (approximately a third of 100) to 

summer (approximately a third of 22). The mean maxima VP for this smaller group are some 50% 

higher than the equivalent spot means for the cohort of 100. 

The mean values for bedrooms in S22 are above CEH for excess dust mite growth (RH 57%, 

temperature 17.7ºC), while those for living rooms are slightly below CEH (RH 51.4%, temperature 

19.4ºC). Individually, more than half of the monitored bedrooms (52%) were above CEH, with 

autumn predominating; while for those below CEH, summer and spring predominated. This 
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compares with sixteen above the 1.13 kPa threshold, but three of these were only slightly above. 

In other words, the absolute moisture limit of 1.13 kPa or 7 g/kg compares reasonably well with 

CEH. Eight of the living rooms were also above CEH, again with autumn cases dominant, but 

twice as many were above 1.13 kPa. The reason for this disparity is that living rooms averaged 

higher temperatures. However, as most of those that were below CEH were monitored in spring 

or summer, the data suggest that if all surveys had occurred in autumn or winter, the problem of 

excessive humidity relative to dust mites would have been worse (only two homes were 

monitored during winter). 

Also, in cases where mean RH and temperature fall comfortably below CEH, the situation often 

reverses for a significant part of the 24-hour cycle – say in evenings when living rooms are 

occupied intensively, or bedrooms overnight. For example, case study No. 22 (CS22) in January 

had a low mean locus for RH plotted as a function of temperature in the living room (43.5%, 

20.6ºC). But for 3.5 hours one evening, mean RH was 70.2% and temperature 23.5ºC, mean CO2 

2,846 ppm; and above CEH throughout this period with RH peaking at 83.2%. Similarly a 

bedroom in CS7 overnight in April averaged 58.8% RH, temperature 21.3ºC and CO2 2,328 ppm, 

putting it well above CEH when its 24-hour average was below. 

Table 2 may be compared with Table 3, indicating relativities for indoor air quality (IAQ), vapour 

pressure (VP), visible mould (M), colony forming unit (CFU) concentration, and drying method. 

In cases where the RH, plotted as a function of temperature, remains consistently below CEH, 

e.g. CS17, there are other consequences – in this case liberal opening of windows while heating 

is still used during spring. Indeed, it would appear that keeping below CEH is often reliant on this 

factor other than in summer – three cases for living rooms and four for bedrooms. 

Such examples illustrate the inherent weakness of encapsulating arithmetic means (as Table 2), 

or indeed other averages such as medians or geometric means. At some point, we need to 

investigate the particular, including maxima and minima at particular times of the day and varying 

relativity between temperature and moisture. Table 2 simply gives a sense of the range of 

averages, as does Table 3 in terms of what these signify in a subjective broad-brush manner. 
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The seasonal shift of emphasis from winter to summer, comparing initial S100 visits and S22 

monitoring, is reflected in the latter’s lower mean CO2 values (living rooms 22% less; bedrooms 

12% less); but S22 mean maxima are significantly higher than average S100 ‘snapshot’ values 

(living rooms 87% more; bedrooms 108% more) and bedroom maxima reflect poor IAQ overnight. 

The association between high CO2 and high moisture was particularly evident in surges attributed 

to intense periods of occupation, accompanied by a rise in temperature – e.g. Fig.1, monitored 

bedroom in CS2. RH maxima usually correspond with maximum absolute moisture levels, and 

CO2, VP, RH and temperature can be high simultaneously – e.g. CS2 bedroom on 6th January 

during early evening: 4,031 ppm, 2.5 kPa, 84.8%, 23.8ºC, within a 10-minute slot. Generally, 

moisture peaks occur during evenings in living rooms and overnight in bedrooms. 

It is known that there may be significant variations of CO2 measurements within a room – e.g. up 

to 400 ppm during an occupancy build-up in one field study [24]; and more in a controlled 

experiment in a naturally ventilated room, particularly vertically [25]. In the Glasgow cases there 

was a general consistency between CO2 levels in different rooms of dwellings. Since the 

emphasis is on CO2 as an indicator of ‘bad company’, rather than of stuffiness per se, and since 

occupancy surges during daily cyclical measurements over 2-week periods conform to 

expectations from field data [24], any variations of CO2 within rooms above and below the 

measured values are unlikely to be misleading in terms of inferences. 

Although the ability of PID to raise moisture levels was often masked or partly masked by quick-

acting influences such as presence of occupants (Fig. 1), the typical impact overnight in their 

absence was identified – indicated by falling CO2 contrasting with a PID-induced rise in vapour 

pressure of approximately 0.38 kPa and a rise in temperature due to the night-storage heating 

(Fig. 2: living room). However, the level of moisture anticipated experimentally (3.5 below), 

suggests that RH and VP should increase more significantly. The difference could be due to 

absorption within fabric and furnishing, higher air-change rate, migration within the dwelling, 

and/or less moisture to be released. The same would apply the case of ironing, where tests 

indicated a lower rise in VP (0.15-0.2 kPa). Such increases, in particular due to PID, would not be 

overly consequential if it were not for the prevailing high levels, and an evident association with 

higher mould spore counts (3.4 below). 
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Those who passively dried indoors, with windows liberally opened during autumn, tended to have 

rather high absolute moisture levels, even though the air quality indicated by CO2 was reasonably 

good, at least on average – e.g. CS3 (Table 2), 19th October to 3rd November, with a living and 

two bedrooms mean VP of 1.31 kPa and CO2 of 719 ppm. This indicated that better control of 

ventilation was required, both to exhaust moist air at source, and to limit ingress of damp ambient 

air at certain times of the year and/or in humid weather conditions. 

Migration of moisture from one space to another indicates similarly poor control of ventilation. For 

example in a kitchen-living adjacency in CS7, a peak of 2.4 kPa (83% RH) at 17.30 is reflected 20 

minutes later by 1.9 kPa (73% RH) in the living room, where further moisture from PID would add 

to an already poor situation. 

3.3 Seasonal influences and PID-related control decisions 

Respondents from S100 had an optimistic view of ‘access to sunlight’ and ‘good access to 

sunshine’. Where this initial view coincided with those in S22 who passively dried within rooms, it 

was found that actual conditions on the first day of monitoring, the day of air sampling, were in 

fact frequently sunny. But perceptual responses to the prevailing weather were capable of 

increasing energy use or compromising IAQ – one issue being windows. 

Where perceptions lead to window opening while heating is still used, or even boosted, and PID 

is occurring, it will have an impact on energy for space heating that can at least partly be 

attributed to the issue of drying. For example, out of 34 households interviewed in winter 

(December to February), 28 (82%) passively dried within their homes, often in more than one 

space. Of these, 19 (68% of 28) located airers on/near heat emitters, and 6 (21% of 28) of these 

turned heat up to speed the drying process. In terms of moisture mitigation, 8 (31% of 26 

applicable cases) said that a window was always open while drying, and a further 13 (50% of 26) 

occasionally opened windows. Some ‘occasional’ window openers coincided with heat-to-dry 

boosters, but none of those that ‘always’ opened windows also boosted heat. Similar tendencies 

were found in spring and autumn. The greater proportion of the ‘heat boosted’ category occurred 

in spring (mean ambient temperatures lower than autumn by 1.64 K in Glasgow), while the 

greater proportion of the  ‘window always open’ category were in autumn. 
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Using the CS2 family size of 7 as a winter example, with windows liberally opened, a BREDEM-

refined [28], 2-zone, steady-state analysis adjusted for January in Glasgow, compared three 

scenarios. Dehumidification was by ventilation only for an intermediate terrace location and the 

TH07 Scottish Technical Handbooks [27] default U-value standards, floor area of 114.5 m2: 

a) Mechanical ventilation with heat recovery (MVHR), and ‘all-day’ 16-hour heating regime to 

21oC demand temperature (mean 20.4oC in living room of CS2 for 10 wash days); zone 1 (living 

plus kitchen) and zone 2 (rest of house) respective values of 0.39 and 0,34 ac/h: 21 kWh/day. 

b) No heat recovery, but with the same heating regime and natural/mechanical air change rates 

of 1.00 and 1.07 ac/h in zones 1 and 2 respectively: 42 kWh/day 

c) No heat recovery, ventilation rates doubled, demand temperature raised to 23oC: 88 kWh/day. 

Broadly, we can see that the energy demand doubles, moving from MVHR to natural/exhaust 

ventilation; and more than doubles again when thermostat setting is raised by two degrees, while 

the ventilation rate doubles. Such differences would increase if the energy efficiency were below 

that assumed – i.e. below TH07 standard – and/or in an end-of-terrace or semi-detached location. 

Dynamic computer modelling [28] of a notional semi-detached house for a winter week, with 

ventilation increased to approximate to CS2 PID conditions, compares reassuringly with the 

above BREDEM-based analysis. Modelling also examined the impact over a year for such a 

dwelling, washing at the relatively extreme rate of CS2 (2 adults; 5 children; all PID), with drying 

confined to 7-hour spells in the living room, while thermostat setting was boosted by 3 K and 

windows left ajar (air change increased by 3.6 ac/h). The simulation predicted a rise of 3,595 kWh 

from about 7,000 kWh – more than 50%. Using the same notional area to that of CS2 for a 7-

person family (114.5 m2), this suggests at least 30 kWh/m2 increase, partly or mainly due to PID; 

but for a more typical 5-person house envisaged in the model (89.9 m2) the increase would be 

approximately 40 kWh/m2. 

Annual tumble-drying (TD), at the same extreme frequency as the above CS2 PID scenario, is 

estimated to consume 1,404 kWh, or 16 kWh/m2. However, this is the electricity consumed at the 

point of delivery. With a generation and grid efficiency coefficient of 0.3652 [29], primary 

consumption would be 3,847 kWh or 43 kWh/m2 for an 89.9 m2 house. Assuming all additional 

modelled space heating of 3,595 kWh is by gas and 85% attributable to PID, a primary to 
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delivered efficiency of 0.9 and a boiler efficiency of 0.9, the primary addition for passive drying to 

space heating is 3,773 kWh. Approximate parity with TD is now evident. However, critically, both 

are unsustainably excessive. Additionally, appliances with flexible hoses to exhaust out of open 

windows (most common method in Glasgow survey) may add to space heating demand in the 

same way as for PID [1], and so comparison of TD -consumption with PID-based simulations is 

not ‘like for like’. Moreover, the estimate, four times greater than the DEFRA average of 354 kWh 

[32], is based on a large household with five children (CS 2). Given that volume of washing, had a 

tumble dryer been employed, it is likely to have been only for some of the washing. 

3.4 Moisture, visible mould and mould spores  

The practice of opening windows while heating is used also impinges on IAQ in terms of CO2 

levels, humidity and spore concentration (CFU/m3). In S22, autumn and winter have the highest 

CO2 and absolute moisture levels (VP) are highest in autumn, followed by summer – some 

ambient influence confirmed by analysis of particular cases. Indoor CFU/m3 is highest in winter 

and spring compared with the two warmer seasons of summer and autumn, when one expects 

the highest values outdoors [31] – median values in an Austrian survey of 1,000 CFU/m3 in 

summer cf. 360 in autumn, 250 in spring and 80 in winter. Respective summer and autumn indoor 

means for S22 were 752 and 638 CFU/m3, and those for winter and spring were 1,068 and 1,347. 

Three key issues are apparent. Firstly, there is no consistency between visible mould and spore 

count (Tables 2 and 3), noting the critical RH required for mould growth on various materials as a 

function of temperature and exposure time [34]. Secondly, there is a general lack of effective 

ventilation to avoid excessive RH spikes due to activities involving rapid moisture production. 

Thirdly, despite several confounding variables, the indications are that PID with slowly drying 

laundry has an association with both relatively high total spore concentration and a higher 

incidence of mould isolates, in particular ones classed as hydrophilic or tertiary (water activity or 

aw > 0.90). Depending on particular mould isolates, the third finding could constitute a potential 

health hazard for atopic occupants (See 4.1). We may note that Finnish research stresses that 

“exposure is the integral of the concentration over time” and also the water activity (aw) range falls 

with rising temperature; for example, Aspergillus versicolor 0.87 at 12ºC, but only 0.79 at 18ºC 
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[39]. This aligns with fuel poverty, where typically low temperatures and high RH provide more 

risk of mould growth. 

Regarding ventilation control, it was evident that awareness of built-in mechanical extract in high-

rise towers was poor – of 8 out of S22 case studies in high-rise towers, only half responded 

correctly. Overall awareness of manual versus automated control was similarly poor in S100 – of 

64 with mechanical exhaust in bathrooms, only13 knew this to be so. Also more than one fifth of 

these households passively dried indoors in the absence of any mechanical extract, with 

ventilation control reliant on window opening and operation of their trickle vents (no dwellings with 

MVHR). There was also no convincing evidence that presence of extract fans mitigated presence 

of mould. More than half of the 100 households had mould in at least one room, and nearly 80% 

of these had at least one mechanical extract.  

Ubiquitous trickle vents were not used in almost half the households in S100. The majority of the 

remainder, 31, claimed to regularly adjust the vents, while 20 said they did this occasionally. Just 

over one fifth (21) said that they were not sure how to operate the vents and more (28) gave other 

reasons for non-use including obstructions to accessibility and non-functionality. Of the 12 in S22 

that used trickle vents, three never adjusted and two occasionally adjusted them. We may 

conclude that trickle vents are a poor provision. More generally, the relatively high moisture levels 

and unsatisfactory IAQ found relates to inadequate means, inappropriate usage and poor 

awareness of natural and mechanical ventilation control.  

The lack of consistent association between total indoor airborne mould spore concentration 

(CFU/m3) and surface mould (Table 2) accords with work in Victoria, Australia [34]: “It is very 

difficult to explain why significantly smaller viable spore concentrations would be found in rooms 

with visible mould growth.” However, this earlier study found that visible mould or condensation 

corresponded with Cladosporium spores, classified as mesophilic [35; 36].  They are also known 

to colonise on interior surfaces [37] even though spore levels indoors are generally driven by 

outdoor concentrations [38]. Penicilllium is a dominant indoor mould [40] and also mesophilic [35; 

36], with concentrations found in the Australian study to increase where walls and floors were not 

insulated [34]. The analysed sampling in Glasgow (20 out of 22) did not provide a similar 

association between airborne presence of Cladosporium and visible mould: 11 with both 
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Cladosporium and mould present; 7 with Cladosporium present but no visible mould; and 2 where 

neither Cladosporium nor mould is present. As Penicillium species are present in all but one of 

these homes, and Aspergillus, another dominant indoor species [38], is present in all of them, it 

was self-evidently not possible to associate either of them with mouldiness. 

However, the Glasgow study indicates a marked association between presence of PID and CFU 

concentration, which consistently tends to be higher when PID is present than absent. Fig. 3 

shows the ‘boxplot’ for 4 independent variables: predominant use of: tumble drying (IV1:TD); 

passive outdoor drying (IV2:POD); passive indoor drying (IV3:PID); and mixed methods (IV4:Mix).   

Tables 4 and 5 give means and standard deviations for CFU for all rooms and the means for 

living and bedrooms in each of the four categories of independent variable. The difference 

between drying methods is statistically significant overall for both as per Table 6 (F (3,18) = 5.29, 

p = 0.009) and F(3,18) = 5.14, p = 0.01). Grouping everything that is not Independent Variable = 

IV3:PID together as IV (IV1:TD, IV2:POD and IV4:mix) = 0, with a new variable IV3:PID = 1, the 

means and t-test, Tables 7-8, show that the difference is highly significant. 

Multiple regression for seven potential confounding variables indicated nothing of significance, 

Table 9: season (spring most significant), floor covering (laminate/timber or carpet), house plants 

(present or absent), heating (gas or electricity), fan in kitchen (present or absent), fan in bathroom 

(present or absent), windows (open or closed; no difference between wide open and ajar). None 

of the p-values (Sig: right hand column) have high significance other than IV3:PID, with that for 

the kitchen fan coming closest to the 10% range. Note that an investigation elsewhere into floor 

coverings of varying types, ages, dustiness and seasons indicated differences in spore 

concentrations [39], although evidently not of significance in the Glasgow study. 

Tests were also done to establish whether intensity of occupation might be significant: firstly, 

CFU-all against the number of occupants; secondly comparing dwellings with adults only to those 

with children; thirdly, the density of occupation taken as the ratio of all occupants to number of 

apartments (bedrooms + living room). Again this showed no significance for occupation factors, 

relative to IV1-4. While regression showed IV3:PID to be significant with p-value = 0.001, that for 

density was negative at p = 0.093 – i.e. higher densities and fewer mould spores, which has no 
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evident logic other than a random paradox. Finally, no statistical significance was found for the 

independent variables IV1-4 relative to the moisture variables (RH or VP). 

The analysis carried out to identify mould isolates in 20 of S22 cases included 6 of the 9 in 

IV3:PID where the spore concentration averaged over 1,000 CFU/m3 (mean 1,616 CFU/m3); and 

is compared with 14 others (all not in the IV3:PID set except outlier CS14) where concentration 

averaged less than 1,000 CFU/m3 (mean 697 CFU/m3). Results (Table 10) indicated a greater 

prevalence of the 19 identified tertiary mould isolates for the six homes with the higher CFU 

concentration compared with the fourteen homes averaging less than 1,000 CFU/m3. If CS 14 in 

the IV3:PID group is included in the ‘high’ CFU set, the respective gaps widen slightly further.  

Taking all tertiary, secondary and primary isolates in the IV3:PID cases (total 49), the IV3:PID set 

of six case studies remains slightly higher than the remaining fourteen. Averages for 16 

secondary isolates reverse this trend slightly. Nevertheless, in two cases where presence of 

specific isolates is high in both groups – e.g. Aureabasidium pullulans and Ucladium chartarum 

[35; 36] – the IV3:PID set has a marginally greater proportion. 

Further, although samples are statistically small, there is a proportionately stronger presence of 

particular tertiary isolates in the IV3:PID cases. Table 11 summarises this for Acremonium 

strictum, Botrytis cinerea [40], Chaetomium spp. [41; 425], Memnoniella echinata [43], Phoma 

herbarum, Rhizopus stolonifer and Stachybotrys chartarum [35; 36]. For other isolates there is a 

universally high or nearly equal, but lower, presence – for example, Mucor spp. [42; 43], 

Trichoderma spp. [45] and Aspergillus fumigatus [45]. 

3.5 Hygrothermal role for lining materials – modelling a drying cupboard 

Laboratory analysis in support of dynamic energy and moisture modelling overlapped with, and 

was informed by, the data-collection and analysis stages of the fieldwork.  One emergent aim was 

to establish whether hygroscopic materials could help to flatten RH profiles in small and discrete 

drying spaces, especially in the initial drying stage, and hence inhibit RH peaks for a given rate of 

extract. Another was to establish the same potential worth in terms of mitigating moisture-

producing activities in larger rooms (e.g. occupants of ill-ventilated bedrooms overnight, and 

ultimately responsible for a proportion of laundering).  
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A monitored PID exercise in a domestic setting was carried out in association with laboratory 

experiments to find absorption characteristics of various building materials.  In the former, VP 

plateaus at approximately 1.2 kPa after 4 hours having started at 0.97 kPa, while temperature 

started at approximately 18.5ºC, rose to 22ºC at completion of drying. The exercise indicated that 

a typical 15 item load, dry weight 3.76 kg, releases moisture at 285 g/h over 7 hrs, totalling 

approximately 2.0 kg or litres. Similarly, 17 items (2 additional cord equivalents), dry weight 4.84 

kg, releases moisture at 355 g/h over 7 hrs totals approximately 2.5 kg or litres. One may 

compare this with the range 2.2-2.95 kg given for a 3.6 kg load in the late 1980s [46], and more 

recently cited [47]. Given higher spin rates today compared with 1988, the PID test values appear 

realistic. Also, approximately 88% of the moisture is released in the first 4 hours of drying in the 

test conditions – reasonably warm and well ventilated. 

Initial laboratory tests indicated that differences in moisture buffering capacity between certain 

materials at 65% RH might justify their use as linings to a drying cupboard. However long-term 

equilibrium moisture content of respective hygroscopic materials can be deceptive compared with 

the moisture absorption by the same set of materials over a short time period. In an equilibrium 

test (criteria include three weight measurements at least 24 hours apart), at 65% RH, unsealed 

cork absorbs 37 g/kg, a proprietary clay board 24.5 g/kg and matt-painted plasterboard 4.5 g/kg. 

However, at 65% RH, short-term gain of 7.0 m2 of the same three materials (as in a 1.75 m3 

drying cupboard) indicates clay board absorption rate of 61 g/h (0.9 g/kg.h) compared with 7 g/h 

(0.7 g/kg.h) for cork and 12 g/h (0.2 g/kg.h) for plasterboard. Values also vary exponentially with 

RH. At the undesirably high moisture level of 90% RH, the clay board is calculated to absorb 262 

g/h, plasterboard 112 g/h and cork 42 g/h; and at 75% RH, approximately 117 g/h, 36 g/h and 16 

g/h. Returning to 65% RH, this suggests that such moisture buffering could absorb 244 g of 

moisture over 4 hours, or 14% of the first 4 hours of drying for a washing load with moisture 

emission of 2.0 kg (88% of 2.0 kg  = 1,760 g ÷ 244 g = 13.9%).  

However, dynamic modelling of a 1.75 m3 drying cupboard indicates greater complexity [28]. 

Damp washing initiates evaporative cooling whilst adding moisture. A series of simulations at 15 

l/s, with simple extract and MVHR operating continuously showed better results than intermittent, 

humidistat-switched control, but still with RH maxima invoking risk of condensation and mould. 
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Continuous extract lowered RH, but consumed considerably more energy than intermittent, 

whether with or without heat recovery – e.g. respectively 19 kWh cf. 12 kWh and 57 kWh cf. 22 

kWh and for a winter week and unpainted plasterboard lining. 

Further modelling at 30 l/s indicated environmental viability, with the extreme condition in summer 

having a period of 24 hours with ambient RH averaging approximately 90%. This caused RH in 

the drying cupboard to exceed 70% for a 4-hour period while a fan operated at 30 l/s. Research in 

the Netherlands explores the risk of intermittent spikes in RH causing mould growth [32; 48; 49; 

50]. However, despite the cautionary note, the 4-hour surge was for a non-hygroscopic lining, 

with moisture absorption in the surfaces not explicitly modelled. Simulations of specific moisture-

absorbing materials such as clay board were ongoing at the end of the EADL study4. Since the 

laboratory experiments indicated that clay board would absorb 3.25 time more than painted 

plasterboard at 75% RH, the simulations may have some damping effect on occasional summer 

peaks. However, a confined space and rapid exhaust seem likely to militate against this. 

4 Discussion: towards healthy, energy-efficient drying 

4.1  Health implications and reliability of results 

The methodology did not include dust sampling and the impact of moisture from PID was difficult 

to isolate in most instances. Nevertheless, the results show that humidity levels are frequently 

above accepted thresholds for excessive numbers of dust mites, to which consequent allergen 

exposure and asthma exacerbation in sensitised individuals has been causally linked [51]. 

With respect to heath implications for, and sensitivity to, mould isolates, it is stated that an 

example such as Aspergillus fumigatus “causes invasive allergenic disease” where immune 

systems are vulnerable [52; 53]; and “can be very dangerous” [54]. Both Aspergillus species, 

present in all the dwellings sampled in Glasgow, and Penicillium, present in all but one, 

“contaminate indoor spaces biologically” and “are important sources of allergens” [31].  

Work in Finland [33] qualified micro-organisms as contaminants “if their presence is harmful and 

unwanted”. In this vein, research in West Virginia [55] cautions  “allergen content in fungal 

extracts is highly variable” [56], with variability in particular species such as Alternaria alternata, 
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Aspergillus fumigatus and Cladosporium herbarum [57]. It also found 6% sensitivity to 

Acremonium strictum, where all patients in a clinic “had symptoms consistent with allergic rhinitis 

or asthma”; while another USA study failed to confirm Acremonium strictum as significant [58]. 

Again, the West Virginian work found sensitisation to Stachybotrys chartarum to be low at 3%, 

aligning with other work [59; 60]. 

Finnish research supplied “the direct link between exposure and health symptoms”, via 

experiments with both hospital patients and mice, confirming a high dependence on the atopic 

status of these subjects in terms of the inflammatory reaction [61; 62; 63]. UK research [64], 

although acknowledging relevance of atopic subjects, lays more stress on health risks from low 

concentrations of mould – viz. ‘Satratoxin H’ produced by Stachybotrys chartarum in damp 

houses capable of causing “necrosis and haemorrhage in many organs”; and cites earlier and 

more recent work regarding health impacts [65; 66]. More recent work includes Phoma 

Herbarum, Rhizopus stolonifer and Stachybotrys chartarum in a set “strongly associated with 

odds of respiratory illnesses” [36]. A cluster of cases of pulmonary hemosiderosis in infants in 

Cleveland, Ohio, led to the isolation Memnoniella echinata, known to be closely related to 

Stachybotrys  [67]. A study of airborne Botrytis cinerea [68] found significant sensitivity in atopic 

subjects – e.g. 24% of suspected mould allergic children with asthma in Finland, and 52% with 

suspected mould allergic patients in the USA; both with ‘radioallergosorbent’ tests (RAST).  

Hence there is variable health significance of certain hydrophilic mould isolates found among the 

IV3:PID case studies. There is also evidence of an association between sensitisation to a mould 

species classed as mesophilic, Aureobasidium pullulans [35; 36], and severity of asthma [69]. 

Although it is also regarded as hydrophilic [70], the lower classification is adopted in EADL. 

Another study [71] links Exophilia jeanselmei to bloodstream infection, normally of low virulence; 

but confirmation of the aw ratio for this species has proved illusive, and accordingly it has also 

been deemed mesophilic or secondary. Ucladium chartarum is another species that appears to 

be mesophilic, but on the cusp of hydrophilic, with an aw ratio of 0.89 [35; 36]. This species is also 

associated with type 1 hay fever [72]. 

The observations here are predicated on the taxonomy of isolates into their primary, secondary 

and tertiary categories, in particular the last. The tertiary group of a further 9 isolates in addition to 
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those already cited  (total 19 tertiary isolates) comprises: Acremonium spp. [40]; Alternaria 

alternata [45]; Chaetomium globosum [36; 40]; Fusarium culmorum [73]; Fusarium sporotrichides 

[74]; Geostrichum candidum [75]; Mucor plumbeus [35; 36; 45]; Mucor racemosus [40]; and 

Phoma glomerata [70]. For isolates deemed secondary, the following 13, in addition to 3 cited 

above in connection with health risk, are: Aspergillus flavus, A. ochraceous, A. versicolor [35]; 

Basidiomycetes [766]; Ascotricha chartarum [776] Cladosporium cladosporioides, C. herbarum, C. 

sphaerospermum [35]; Curvularia geniculata7; Epicoccum nigrum [35; 36]; Fusarium spp.8; 

Fusarium solani [35]; and Scopulariopsis brevicaulis [40; 78]. 

The review of the presence or absence of specific mould species validates the relevance of 

higher overall airborne spore concentrations associated with PID. This group had a 

proportionately greater presence of hydrophilic species in comparison to other forms of drying 

(both average for set of hydrophilic isolates identified, and proportion of specific isolates), 

approximate parity for the mesophilic species and a greater proportion of total isolates. It has long 

been recognised that CO2 is a useful IAQ indicator of ‘bad company’, and remains so today [3]. 

However, in this case CFU concentration is not necessarily recognized by CO2 since PID may 

occur in the absence of the occupants. Moreover, overall CFU/m3 cannot be easily or cheaply 

measured, let alone concentrations of mould isolates. 

The literature reviewed here suggests that the severity of health risk attributable to airborne 

spores varies considerably. Accepting this caveat, the range of values of spore counts and 

isolates associated with the presence of PID is of a level whereby the health of atopic occupants 

(those vulnerable to hay fever, asthma and eczema) could be adversely affected. Although not as 

relevant as presence or absence of specific species, the arithmetic mean total concentration is 

over three times a Finnish health limit of 500 CFU/m3 [79], in turn supported by earlier Danish 

research [80]. Further, the Institute of Medicine in the USA predicts that 6-10% of the population 

and 15-55% of atopics are sensitized to fungal allergens [51]. This range is commensurate with 

other contemporaneous work [81], quoting “20 to 30% among atopic individuals and up to 6% in 

the general population”. Later commentary adheres to these broad estimates, and reports on 

skin-prick tests at 29 European allergy centres, which gave a range of 1.3-52% allergy and 
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median of 18.8% for airborne Botrytis cinerea, comparing this to a 40.5% median for allergic 

response to at least one fungal species. [67].  

An underlying hypothesis supported by the evidence is that damp textiles drying slowly over a 

period of several hours (up to a day or more in moist, cool conditions) tends to be more potent, in 

terms of fostering fungal spores, compared with other producers of moisture that are more 

concentrated but in shorter durations (also more convectively driven and often exhausted rapidly 

at source). The prevalence of washing cycles at or below 40ºC may also result in spores present 

in dirty laundry remaining active once clean [84; 85; 86]9. Virtually all – 95% (89 out of 94) in S100 

– used 40ºC or 30ºC as the most frequent wash temperature, and 39% (37 out of 94) 30ºC. In the 

S22 IV3:PID set exceeding 1,000 CFU/m3 there are three at 30ºC, three at 40ºC and one at 60ºC, 

the last having the lowest CFU count of these seven households.   

However, doubt can linger as to coincidence in the statistical analysis of a small sample. 

Geometric means help to correct the bias of outliers shown in the ‘boxplot’, Fig. 3 (i.e. are more 

representative than arithmetic means). In the eight IV1:TD case studies, the geometric mean for 

living rooms and bedrooms is 644 CFU/m3 (2.7% lower than arithmetic mean 662). For the nine 

IV3:PID homes, the geometric mean is 1,398 CFU/m3 (8.5% lower than arithmetic mean 1,528). 

It is also reassuring to find a rationale for particular outliers masked in the averages above, but 

evident in Fig. 3. For example, in CS6, with no significant surges in humidity corresponding to 

tumble-drying cycles, all rooms have very high overall humidity and poor IAQ, the latter 

suggesting that ambient influence is low. Means for VP, RH and CO2 are respectively 1.54 kPa, 

73.6% and 2,046 ppm for living room and bedrooms combined; and equivalent mean maxima are 

2.01 kPa, 87.5% and 5,000 ppm (instrument limit). But spore counts exceed 1,000 CFU/m3 in all 

spaces apart from the kitchen. Nevertheless, the count of tertiary isolates is significantly lower 

than the average for the PID set (3.0 compared to 6.5), and even the number of secondary 

isolates is below average. Rather than simply being exceptions, knowledge of specific 

circumstances also helps to explain other outliers (e.g. CS7 and CS18 high; CS14 low), and 

some of the differences found between EADL in Glasgow [85] and the French study [17]. 
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There is a further issue in relation to PID, outside the scope of EADL while relevant for future 

work and a new generation of drying cupboards (4.2 below) – that of water soluble VOCs 

increasing in concentration with increased humidity [86]. This will apply to any formaldehyde in 

timber particleboards and other common building or furnishing materials. Moreover, with specific 

regard to PID, acetaldehyde has been associated with fabric softeners in the USA [87; 88]. 

EADL found that many households used both biological detergents and softeners. Work in USA 

established a level of reported irritation to scented laundry products vented outside by tumble 

dryers [89]. This supports the desirability for a specific UK study in that higher numbers may 

experience irritation from fabric softeners within the confines of their homes linked to PID. 

4.2 Regulation and best practice 

The analysis, including laboratory work and simulations, provides evidence that the practice of 

PID currently compromises energy efficiency and IAQ, the latter potentially boosting dust mite 

populations and increasing airborne mould spore concentrations. Regarding energy, open 

windows and/or augmented heating may add to fuel poverty, while excessive dust mites or 

airborne mould spores may adversely affect health, especially for the atopic section of the 

population and notably including young children. Menon and Porteous [90] have summarised the 

regulatory status quo for PID and suggested minor changes to the wording of standards 

applicable to PID; these to require discrete heated and ventilated drying facilities in order to tackle 

the problems identified by EADL.  

This prospective change aligns with a DEFRA briefing [91]: “New homes should be required to 

have accommodation for efficient laundry drying facilities including, where possible, space for 

outdoor drying and an airing cupboard served by MVHR.”  However, the EADL simulations noted 

above indicate that heating loads for dedicated drying cupboards remain significant. To offset 

these, efforts should be made to exploit fortuitous heat from internal sources and/or solar heat. 

Examples in the former case are transmitted heat from ‘main-space’ radiators sited on the outside 

of drying-cupboard partitions, or from a boiler, hot water cylinder, or appliances (e.g. a freezer) in 

the cupboard. Solar gains might be in the form of direct passive gain through glazing, or indirect, 

say from a solar air collector. Both are known to perform well in Scotland [92]. Direct passive 
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solar gain can also be exploited externally together with protection from precipitation – 

transparent canopies – or indirectly making use of active or hybrid solar techniques – communal 

facilities providing an opportunity to remove the drying cycle of laundering from the home [93; 94]. 

In addition to minor changes to UK and Scottish Government statutory building standards to meet 

these aspirations, manufacturers of MVHR systems may have to modify their current practice and 

product range. Fan power would depend on designing the system to avoid excessive effective 

length and hence pressure drop. Since MVHR has been simulated as a superior option to simple 

extract, recently published information with respect to performance in practice is relevant [95; 96]. 

This indicates that successful operation is dependent on effective design, quality of installation, 

appropriate use (in turn reliant on specified control system) and regular maintenance; and that 

often one or more of these aspects undermines the efficacy of the system. 

Completed work by others [97; 98] adds knowledge concerning moisture buffering and places 

dynamic moisture modelling in context. Given the stated emphasis of this paper, the intention at 

this stage is to give a pointer toward simple architectural solutions to the environmental and 

health risks brought to light by current PID custom and practice.    

5 Conclusions 

1) The combination of inadequate indoor and outdoor drying provision, coupled with prevalent 

poor control of ventilation and moisture migration within dwellings, means that the occupants’ ad 

hoc use of PID in various rooms and circulation spaces has two identified and potentially 

undesirable environmental consequences compared with other drying methods: 

a) Moisture contributes to excess dust mite growth, with a known causal association with asthma; 

b) Association with higher concentration of airborne mould spores (CFU/m3 > 1,000), and greater 

prevalence of hydrophilic isolates; attributable to slow release of moisture and possibly partly to 

low-temperature washes; and potentially adding to health risk for atopic occupants. 

2) Since CFUs are not simple or economic to measure on a regular basis, the only way to ensure 

levels are reasonably low is to remove known sources of the problem – in this case PID and very 

high indoor humidity for other reasons such as inadequate ventilation with intense occupation. 
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3) Although epidemiological data already exists in the case of 1a), this study indicates a case for 

specific work to identify associations between CFU concentrations that are at least partly 

attributable to PID, and potential health effects, in particular to those who are prone to allergies.  

4) PID is also inherently energy-profligate due to accompanying ventilation and heating habits. As 

it could use as much as full reliance on tumble-drying (TD) in primary energy terms, as well as 

diminishing quality of life, there is a strong case for healthy, energy-efficient forms of PID and TD. 

5) The first four conclusions point to the need for independently heated and ventilated drying 

spaces – i.e. ‘isolated’ to improve both health-safety and energy-efficiency. This would require 

changes to current statutory standards of a minor nature (including larger minimum volume than 

present designated space), but with a potentially large economic impact.  

6) Laboratory work has indicated limited potential for lining materials such as clay-board to curb 

humidity peaks in minimal drying spaces of this kind, in particular during exceptionally moist 

summer periods. But moisture buffering in larger, less rapidly ventilated, spaces could be more 

useful. There are also many architectural options for environmentally ‘safe’ PID, especially ones 

that exploit fortuitous heat gain and/or solar energy – thermal or electrical; the key criterion being 

that exhaust air does not circulate into inhabited spaces. These may be individual or shared, the 

latter in enhanced outdoor, semi-outdoor or fully indoor situations, including partial or full 

communal laundry provision, and could be added as new advisory ‘best practice’ standards. 

7) Given the evidence of poor ventilation, there is a case for further work to study concentrations 

of VOCs associated with domestic laundering, in particular fabric softeners during a PID process. 

The case for this in the UK relates to work in northwest USA, which found chemicals such as 

acetaldehyde (classed as carcinogenic) emitted from drying involving softening products, as well 

as to moisture from PID adding to concentration of other water-soluble VOCs in various materials. 
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Endnotes: 

1 The Mackintosh Environmental Architecture Research Unit (MEARU) within the Mackintosh 

School of Architecture, The Glasgow School of Art, conducted task (i) and led the project – EADL. 

Another research unit, Research into Indoor Climate and Health (RICH), at Glasgow Caledonian 

University, covered task (ii). A third research unit, Energy Systems Research Unit (ESRU), 

University of Strathclyde, Glasgow, undertook work on task (iii) in liaison with RICH. MEARU is 

leading task (iv) as an ongoing component in association with RICH and ESRU. 

2 Table 3 of this document gives 334,351 GWh generated in 2009, with grid losses of 7.5% 

indicating a net value of 309,274.7 GWh; and when divided by the value in Table 7 for all energy 

used in generation by all methods in 2009 of 846,736 GWh gives a coefficient of 0.365. 

3 Yeast was excluded from the list of isolates as it occurred in all case studies; and Fonsecaea 

pedrosoi was excluded as a human pathogen with no classification for water activity. 

4 A serious fire at the University of Strathclyde disrupted final work on objective 3 of EADL. 

5 Advanced Building Forensics Inc. classify Chaetomium spp. as tertiary with a water activity 

above 0.90; and Andersen et al state that it has ‘concurrence and strong association’ with other 

tertiary isolates such as Mucor Racemosus  and Aspergillus fumigatus.. 

6 Deemed to be mesophilic/secondary due to association with water-damage building materials. 

7 Deemed to be mesophilic/secondary after correspondence, 20/11/12, with Prof. Sidney Crowe, 

Georgia State University, who considered it analogous to Alternaria or Cladosporium. 

8 Deemed to be mesophilic/secondary, with aw range 0.87-0.91 for four species of Fusarium. 

9 Advice to kill microorganisms such as dust mites in washing machines is commonly given as 

60ºC, and 90ºC for most bacteria, but those for fungal spores are more elusive. The Hygiene 

Council states: “Low temperature washes may not destroy all the germs and fungal spores.” 

(www.hygienecouncil.org/Portals/1/pdf/Media_The_Truth_About_Germs_Fact_Sheet_pdf., 2012). 
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The consumer advice of ‘Which? Washing machine reviews: FAQs?’ is that 60ºC will remove 

mould spores as well as dust mites and bacteria (www.which.co.uk/home-and-garden/laundry-

and-cleaning/reviews/washing-machines/page/faqs/, 2012). Dr Nathan Yost of the Building 

Science Corporation, Somerville, MA, USA, claims: “Temperatures well above 100 F [38ºC] will 

kill mold and mold spores, but the exact temperature to kill specific species is not well 

established.” (www.realtor.org/realtororg.nsf/pages/moldfaq, 2012) Of the three citations, Florian 

et al state: “Most hydrated conidia and living hyphae are killed at temperatures just around 40ºC, 

..”, noting that the hypha is the ‘unit of structure of most fungi’, and a conidium a ‘non-motile 

airborne asexual spore’. Work on a ‘water mould’ by Kilroy et al in New Zealand, which Richards 

and Talbot in the UK note has a genetic alignment (‘gene transfer events’) with fungi, also 

supports 40ºC as a critical survival temperature in immersed conditions: “Exposure to 40ºC was 

lethal to D. geminata after just 20 minutes” (section 2.4.2 Hot Water Treatment, p 18; this also 

shown on Table 2, p13, with explanatory text). On the other hand, the same paper by Kilroy and 

her team finds that the survival extends to 1.2 days at 28ºC (Table 1, p 11). “Water moulds’ are 

formally oomycetes, a group within heterokants, a major group of algae, including 

Didyomosphenia geminata. In summary, although work of this nature is relatively limited, it does 

align with informal consumer advice and adds authority to the proposition that low-temperature 

washes may have exacerbated the incidence of CFUs associated with PID. 
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TABLE 1    Spot data averages for 100 dwellings 

Room 

Living Rm 

Bedroom 1 

Bedroom 2 

Kitchen 

Bathroom 

Hall 

CO2 (ppm) 

1,248 

1,314 

1,192 

1,245 

1,297 

1,314 

%>1,000ppm 

25% (24%<) 

31% (21%<) 

19% (31%<) 

25% (26%<) 

30% (21%<) 

31% (20%<) 

Temp. (oC) 

19.6 

19.1 

19.3 

19.2 

18.3 

18.9 

RH (%) 

51.5 

52.4 

56.2 

52.5 

56.8 

53.3 

VP (kPa) 

1.16 

1.15 

1.24 

1.16 

1.17 

1.15 

%>1.13 kPa 

  3% 

  2% 

10% 

  3% 

  4% 

  2% 

Note: the 3rd column values in parenthesis (e.g. (24%<) for living room) indicate percentage of 

dwellings where the CO2 spot values were below 1,000 ppm. In other words, the remaining 76% 

of living rooms will be more than 25% above 1,000 ppm – in fact averaging 1,355 ppm or 36% 

above the accepted maximum level in this instance. 
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TABLE 2: Air Quality and Moisture – numerical means 

CS Season CFU M AQ-L AQ-B VP-L VP-B RH-L RH-B RH-K 

  mean  mean mean mean mean mean mean mean 

  /m3  ppm ppm kPa kPa % % % 

1 (e) summer 644     691    719 1.18 1.21 43.0 45.8 44.2 

2 (g) winter 914 B    932    991 0.94 1.13 39.0 45.5 48.1 

3 (g) autumn 561 K    715    747 1.34 1.32 52.3 60.0 57.1 

4 (e) spring 751 Ba 1,097 1,385 1.22 1.31 44.7 58.0 58.0 

5 (e) autumn 466 B    833 2,232 1.27 1.47 62.5 61.4 59.6 

6 (e) autumn 1,013 B 3,119 1,824 1.59 1.58 74.6 71.9 75.4 

7 (e) spring 2,186 B/Ba/K    965 1,701 1.42 1.35 55.8 51.5 60.6 

8 (g) autumn 587 K    836 1,134 1.35 1.40 61.3 75.8 71.2 

9 (g) summer 1,264 Ba    610    669 1.24 1.26 54.2 56.3 54.0 

10 (e) summer 575 B    628    910 1.18 1.15 50.7 54.2 49.8 

11 (e) summer 715 B/Ba    911 1,592 1.48 1.66 61.1 68.0 60.3 

12 (e) summer 855     488    601 1.31 1.14 56.9 60.8 51.1 

13 (e) summer 526     972    850 1.27 1.25 47.7 45.0 48.0 

14 (g) summer 687     709    699 1.17 1.19 56.9 53.1 48.6 

15 (g) autumn 562     785    996 1.28 1.40 68.5 71.8 70.5 

16 (g) spring 685 B/Ba 1,478 no d. 1.26 no d. 47.3 no d. 48.7 

17 (e) spring 752     531    828 0.92 1.01 33.9 56.9 40.3 

18 (e) spring 2,625     586    561 0.91 0.93 40.3 50.9 48.8 

19 (e) spring 1,259     906    767 1.09 1.10 44.4 53.2 51.6 

20 (e) spring 1,443 K    926 1,340 1.14 1.20 49.2 59.4 50.7 

21 (e) spring 1,077  1,092    640 1.18 1.03 41.9 49.4 43.8 
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22 (g) winter 1,222  1,545 1,883 1.06 1.02  43.5 43.2 41.6 

 

Table 2 Legend: 

CS = Case Study number, the sequence 1-22 of analysis of the 22 volunteers from the 100 

households initially surveyed. This order was adopted to facilitate a coherent line of narrative 

research enquiry, and it is out of chronological sequence relative to the surveys.  Electric (e) and 

gas (g) heating in parenthesis after CS number. 

CFU mean/m3 = mean number of ‘colony forming units‘ found in each of 5-6 spaces by MEA (malt 

extract sugar) given in table; PDA (potato dextrose agar) also used; noting that the mean maxima 

for PDA was 1.265% higher than for MEA, and the overall mean average of 849 is 1.31% more 

than that found by PDA (838). Note also that a limiting value of 500 CFU/m3 is used in Finland for 

indoor air in urban areas in winter (Ministry of Social Affairs and Health, 2003 (Finland); cited in 

‘WHO guidelines for indoor air quality: dampness and mould’, 2009). 

AQ-L/AQ-B mean ppm = mean CO2 in living room and bedroom(s); noting that 5,000 ppm is the 

maximum instrument value; and where two bedrooms, highest value used. 

VP-L/VP-B mean kPa = mean vapour pressure in living room and bedroom(s). 

RH-L/RH-B/RH-K mean % = mean RH% in living room, bedroom(s) & kitchen. 
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TABLE 3: Air Quality and Moisture – qualitative relativities  

CS Season TD OD ID CFU M AQ-L AQ-B VP-L VP-B 

1 (e) summer ✔   l-mod.  good good high high 

2 (g) winter   ✔ h-mod. B mod. poor high high 

3 (g) autumn ✔✔  ✔ l-mod. K good mod. high high 

4 (e) spring ✔ ✔ ✔ mod. Ba poor poor high high. 

5 (e) autumn ✔   low B mod. poor high high 

6 (e) autumn ✔   high B poor poor high high 

7 (e) spring   ✔ high B/Ba/K poor poor high high 

8 (g) autumn ✔✔  ✔ l-mod. K good poor high high 

9 (g) summer   ✔ high Ba good good high high 

10 (e) summer ✔✔  ✔ l-mod. B good mod. mod. mod. 

11 (e) summer ✔✔  ✔ h-mod. B/Ba good poor high high 

12 (e) summer ✔  ✔ h-mod.  good good mod. mod. 

13 (e) summer ✔   l-mod.  good good high high 

14 (g) summer   ✔ h-mod.  mod. good mod. mod 

15 (g) autumn  ✔✔ ✔ l-mod.  good good high high 

16 (g) spring  ✔  l-mod. B/Ba poor no d. high no d. 

17 (e) spring  ✔✔ ✔ h-mod.  good good mod. mod 

18 (e) spring   ✔ high  good good low mod 

19 (e) spring   ✔ high  mod. mod. mod. high 

20 (e) spring   ✔ high K poor poor high high 

21 (e) spring   ✔ high  poor good high mod 

22 (g) winter   ✔ high  poor poor high low 
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Table 3 Legend: 

e/g = electric or gas heating (fixed appliances mainly storage in case of electric heating) 

TD = tumble drier, including where in laundrette or other communal facility; where double-ticked 

indicates the dominant strategy where there more than one drying technique is used. 

OD = outside drying, whether using communal or private space. 

ID = internal drying within the home, frequently employing more than one room or space. 

CFU = colony forming unit (mould spores), expressed per m3 from analysis of air samples; where 

high = > 1,000, h-mod/ l-mod. (high/low-moderate) 700-1,000/500-700, low <500.  

M = mould – its visible presence at time of survey; B: bedroom, Ba: bathroom, K: kitchen. 

AQ-L/AQ-B = air quality in living room and bedrooms; where good = CO2 mean >1,000 and max. 

<2,000 ppm; mod. = mean <1,000, max. >2,000; poor = mean >1,000, max. >2,000. 

VP-L/VP-B = vapour pressure in living room and bedrooms; where high = max. >1.6 kPa; mod. = 

mean <1.2 kPa, but max. >1.3  kPa; low = max < 1.2 kPa; noting 1.13 kPa or 7 g/kg mixing ratio 

is dust mite threshold (Platts-Mills & De Weck,1989; Niven et al, 1999), and 1.6 kPa or circa 10 

g/kg gives RH levels above 70% for temperatures <19.7oC. 

no d. = no data available, in relation to AQ and VP above. 
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TABLE 4: means and standard deviations 

CFU_all spaces (arithmetic mean) 

Ind. Var. Mean N Std. Deviation 

IV1TD 644.63 8 149.002 

IV2:POD 681.67 3   70.002 

IV3:PID 1388.33 9 604.369 

IV4:mix 808.00 2   66.468 

Total 968.77 22 526.243 
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TABLE 5: means and standard deviations  

CFU_living/bedrooms (arithmetic mean) 

Ind. Var. Mean N Std. Deviation 

IV1:TD 661.88 8 181.681 

IV2:POD 688.33 3 120.010 

IV3:PID 1528.33 9 716.378 

IV4:mix 838.50 2   55.861 

Total 1036.00 22 621.460 
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Table 6: F tests comparing drying methods 

 
Sum of Squares df Mean Square F Sig. 

Cfu_all Between Groups 2723839.322 3 907946.441 5.286 .009 

Within Groups 3091724.542 18 171762.475   

Total 5815563.864 21    

Cfu_liv/bed Between Groups 3741913.958 3 1247304.653 5.139 .010 

Within Groups 4368550.042 18 242697.225   

Total 8110464.000 21    
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Table 7:  means and the t-test for former IV1, 2 & 4 as O and IV3 as 1.00 

 

 IV3 N Mean Std. Deviation Std. Error Mean 

CFU_all .00 13 678.31 133.035 36.897 

1.00 9 1388.33 604.369 201.456 
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  Table 8: t-test for Equality of Means 

  

 

95% Confidence 

Interval of Difference 

 CFU_all 

t df 

Sig.  

(2-tailed) 

Mean 

Difference 

Std. Error 

Difference Lower Upper 

 Equal variances assumed -4.136 20 .001 -710.026 171.667 -1068.116 -351.935 

Equal variances not assumed -3.467 8.539 .008 -710.026 204.807 -1177.170 -242.881 
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Table 9: Multiple regression of 7 potential confounding variables 

Model: CFU-all 

Unstandardized Coefficients 

Standardized 

Coefficients 

T Sig. B Std. Error Beta 

1 (Constant) 524.483 262.355  1.999 .067 

IV3:PID 682.856 182.845 .653 3.735 .002 

spring 307.786 212.910 .288 1.446 .172 

Floor Cover 127.343 179.971 .122 .708 .492 

Plants 154.671 189.903 .140 .814 .430 

Heat -184.802 181.198 -.177 -1.020 .326 

Fan_kit 318.247 174.626 .308 1.822 .091 

Fan_bath -110.047 200.079 -.100 -.550 .592 

Window open -54.761 200.867 -.045 -.273 .789 
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TABLE 10   Comparative presence of isolate types in cases above and below 1,000 CFU/m3  

Case study 

>1000/m3 

CS7 

CS9 

CS18 

CS19 

CS20 

CS21 

Case study 

<1000/m3 

  

  

  

  

  

  

Means 

CS1 

CS3 

CS4 

CS5 

CS6 

CS8 

CS10 

CS11 

CS12 

CS13 

CS14 

CS15 

CS16 

CS17 

Means 

CFU/m3 

 

2,110 

1,251 

2,625 

1,279 

1,317 

1,111 

1,616 

   902 

   560 

   755 

   565 

   990 

   594 

   587 

   696 

   855 

   526 

   687 

   612 

   681 

   752 

   697 

Tertiary: out 

of 19 No. (%) 

7 (37) 

7 (37) 

5 (26) 

6 (32) 

4 (21) 

10 (53) 

6.5 (34) 

3 (16) 

5 (26) 

5 (26) 

5 (26) 

3 (16) 

4 (21) 

7 (37) 

4 (21) 

4 (21) 

5 (26) 

6 (32) 

2 (11) 

7 (37) 

8 (42) 

4.9 (26) 

All: out of 49 

No. (%) 

15 (31) 

22 (45) 

16 (33) 

15 (31) 

17 (35) 

20 (41) 

17.5 (36) 

16 (33) 

16 (33) 

17 (35) 

14 (29) 

15 (31) 

15 (31) 

18 (37) 

14 (29) 

12 (24) 

11 (22) 

19 (39) 

12 (24) 

20 (41) 

20 (41) 

15.6 (32) 

Secondary: out 

of 16 No. (%) 

5 (31) 

7 (44) 

7 (44) 

5 (31) 

7 (44) 

5 (31) 

6.0 (38) 

8 (50) 

7 (44) 

7 (44) 

5 (31) 

6 (38) 

5 (31) 

6 (38) 

5 (31) 

5 (31) 

2 (16) 

8 (50) 

6 (38) 

8 (50) 

7 (44) 

6.1 (38) 

Notes 

   

Set of 6 PID cases 

with more than 

1,000 CFU/m3; 

greater proportion 

of specific tertiary 

isolates - see 

Table 11 

Set of 14 non-PID 

dominated cases 

with less than 

1,000 CFU/m3; 

lesser proportion 

of specific tertiary 

isolates - see 

Table 11 
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Note: Total 49 isolates (49 No.) identified, of which 19 are tertiary, 14 are secondary and the 

balance of which are primary; yeast isolate ignored as present in all case studies. 
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TABLE 11   Proportions of specific tertiary isolates: sets above* & below** 1,000 CFU/m3  

Acremonium 

strictum 

 No. (%) 

 2 (33) 

 2 (14) 

Botrytis 

cinerea 

 No. (%) 

3 (50) 

 3 (21)  

Chaetomium 

spp. 

 No. (%) 

 3 (50) 

 3 (21)  

Memnoniella 

echinata 

 No. (%) 

2 (33) 

 0 (0)  

Phoma 

herbarum 

 No. (%) 

 4 (67) 

 6 (43)  

Rhizopus 

stolinifer 

 No. (%) 

 5 (83) 

 6 (43) 

Stachybotrys 

chartarum 

 No. (%) 

2 (33) 

 1 (7) 

Note: Proportions given in number (No.) and percentage of specific isolates identified in set of six 

PID cases* above 1,000 CFU/m3 (1st row of values); and in set of fourteen cases that are not 

PID-dominated** below 1000 CFU/m3 (2nd row of values). For example, column 1 of the 1st row 

means 2 No. or 33% of a set of six PID cases; and column 1 of the 2nd row means 2 No. or 14% 

of a set of fourteen non-PID. 
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Fig. 1 Typical moisture and CO2 relativity in a bedroom, also used for passive indoor drying. 
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Fig. 2 Overnight drying juxtaposition of moisture and CO2 compared with evening occupancy 
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Fig. 3 Boxplot  

Note: box is the interquartile range, heavy line the median; case numbers of outliers are shown. 
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