Findings from a Post Occupancy Evaluation of adaptive restoration and performance enhancement of a 19th century 'Category B' listed tenement block in Edinburgh

Donald Shearer

setting the scene

- need for climatic response
- legislative approach to reduction in energy use and CO₂ output
- relevance of existing stock
- relevance of specific typologies

THE GREAT DEBATE ON THE FUTURE OF ARCHITECTURE

CONSERVATION

SUSTAINABILITY

WILL THESE TWO MIGHTY LOBBIES EVER BE UNITED? - JOIN THE DEBATE

our scenario

- · a 19th century masonry tenement adaptive rehabilitation
- within a UNESCO world heritage site

our scenario

- design of low energy supported housing accommodation
- incorporation of thermally efficient envelope, MVHR, GSHP & sunspaces
- impact of design aspirations?
- what were suspected problems?
- how were these investigated?

process

- monitoring of physical parameters
- comparative analysis of predicted vs actual energy consumption
- assessment of user satisfaction

thermal comfort - prevailing conditions

Room	Comfort Temp (°C)	Mean Temp (°C)	Δ T ¹ (°C)	Absolute Max (°C)	Δ T ² (°C)
Living Rm	21.00	22.62	+1.62	28.00	+7.00
Kitchen	18.00	22.87	+1.87	29.10	+11.10
Hall	18.00	23.45	+5.45	31.20	+13.20
Sun Space		21.24		40.90	
Bedroom 1	18.00	22.58	+4.58	27.20	+9.20
Bedroom 2	18.00	21.41	+3.41	26.20	+8.20

mean and absolute thermal conditions over monitored period (comfort standards as BS 5449:1990)

thermal comfort vs user behaviour

thermal comfort vs user behaviour

thermal comfort problems

floor surface temperature Ta

floor surface temperature T^a + 60 mins

thermal comfort and passive gain

internal air quality

positive reporting

- actual energy consumption (space and water heating) 2.1
 times greater than SAP predictions
- space and water heating requirements of 92kWh/m² identified
- ground source heat pump found to provided significant CO₂ savings compared to conventional heating systems

conclusions

- relevance of investigated typology national housing stock
- confirmation of usefulness of short-term, highly focussed POE studies
- identification of gap in the understanding of the relationship between thermal performance and internal environment quality
- need for designers and specifiers to understand the growing level of complexity in the application of sustainable technologies and approaches to building design

Donald Shearer Mackintosh Environmental Architecture Research Unit Glasgow School of Art Renfrew Street Glasgow G3 6RQ

d.shearer@gsa.ac.uk

