
Visualising an Amusement Park – A Case Study

Martin Naef, Douglas Pritchard, Chris McMahon, Paul Anderson

Digital Design Studio, The Glasgow School of Art

ABSTRACT
This paper presents a real-time visualisation of an early
architectural design for an amusement park. This commercial
project, aimed at generating political support and investor interest
for the proposed development, was implemented to strict budgets
and deadlines and provides the case study to analyse the
limitations of current content creation tools and formulate
requirements for further research and development.

KEYWORDS: Real-time architectural visualisation.

INDEX TERMS: I.3.8 [Computer Graphics] Applications

1 INTRODUCTION
High quality off-line renderings have long been the standard and
only way to visualise architectural projects. Commercial
modelling and rendering software today empowers even smaller
design companies to produce photorealistic images and stunning
videos to present their designs in the best light. However, such
glossy pictures are often received with scepticism and the desire
to see different, potentially less flattering aspects or viewpoints.
With turnaround times of between hours and days for high quality
renderings and videos, it is not possible to react spontaneously to
audience requests and present new image material during
presentations. Real-time visualisation tools provide the means to
fill in this gap and to impress the audience with dynamic and
spontaneous presentations.

The Digital Design Studio of the Glasgow School of Art has
created real-time presentations of a wide range of architectural
design and urban planning projects for commercial partners. This
paper presents the lessons learned from visualising an early design
of a large amusement park with the aim of generating political
support and investor interest. The particular case study represents
well the requirements for this type of application and the
limitations of current, off-the-shelf content creation and display
tools.

The paper focuses on the challenges and trade-offs required to
meet a range of requirements while operating within strict time
and budget limitations. The case study is not representative of the
current state of the art in research; instead it aims to provide an
understanding of the requirements and scene complexity of
commercial applications as opposed to isolated aspects typically
addressed by research projects.

2 VISUALISATION REQUIREMENTS
The architectural design of the amusement park was in its early
stages at the beginning of the project. The visualisation team

received a series of hand drawings from the architect representing
the top-down view of the site including its immediate
surroundings and a rough CAD model including building outlines.
The development covers an area of roughly 1 km square, which is
typical for many similar projects, although the team has
previously handled real-time urban visualisations for larger
regions of approximately 5 by 3 km. The amusement park is a
parkland setting including green zones, transportation, pedestrian
areas, large artificial ponds and a range of buildings representing
different geographic regions and industries.

The modelling team was tasked to visually enhance a basic
block model provided by the architect to move away from the
abstract look towards a “realistic” experience. This required a
degree of guess-work and artistic freedom as the details of the
architecture had not been specified at that point. This was a rather
unusual project brief, as it required the modellers to make
decisions usually left to the architect about the look of buildings.
At the same time, it allowed the modellers to take a “game
development” approach where design decisions were influenced
by the polygon budget. Normally, the modellers are presented
with fully specified CAD models that may need optimisation for
real-time display. A rendering of the resulting model is shown in
Figure 1.

Figure 1. Offline-rendering of the augmented model.

2.1 Presenting the Model
Presentations using a real-time environment typically consist of a
rehearsed and closely scripted introduction, followed by an
interactive Q&A session where the visualisation is used to answer
audience questions.

For the introduction section, a set of viewpoints are defined in
advance. With a key press, the application smoothly flies to the
next view to present individual aspects of the design. Animation
paths can be defined as well, enabling automatic fly-through.
While the audience’s experience is similar to showing pre-
rendered animations, the real-time system enables the presenter to
change and optimise viewpoints until the last minute – an all too
common request frowned upon by traditional off-line visualisation
providers where turn-around times of several hours or days per
animation sequence are common. [m.naef | d.pritchard | p.anderson]@gsa.ac.uk

During the interactive session, the presenter typically refers
back to preset viewpoints and then navigates to the desired view
using a SpacePilot 3D joystick. Flying or hovering using this six
degree of freedom input device requires some initial training for
the operator, but is intuitive enough for a non-expert user to
quickly learn how to use it efficiently and smoothly.

2.2 The Impact of Viewpoints
The technical and modelling requirements of a real-time
visualisation are highly dependent on the expected viewpoints. A
pedestrian’s point of view provides a good impression of how a
development will look for the general public. The pedestrian’s
point of view imposes heavy requirements on the modelling:
Objects nearby must be displayed with a lot of detail to render a
realistic impression, resulting in very polygon- or texture-
intensive scene data that easily exceeds rendering as well as
memory capacity of the image generator hardware if a larger area
has to be covered. At the same time, though, specialised visibility
culling algorithms [1] tend to be very effective at reducing
graphics hardware bandwidth as buildings nearby cover large
portions of the scene.

A bird’s-eye viewpoint, on the other hand, is preferred for
judging how a building fits into an existing context or, in the case
of the amusement park, how a larger development is structured.
This perspective is less demanding on the modelling detail simply
due to the larger distance, but it also renders most visibility
culling techniques ineffective.

Many common applications such as flight- or driving simulators
as well as games use predominantly one type of viewpoint,
enabling the application designer to optimise the model for the
particular application. The visualisation of urban or architectural
developments, on the other hand, typically requires switching
between both types of viewpoint. This was clearly the case with
the amusement park model where a strong focus was put on top
views to display the spatial concept while still being able to
convey a visitor’s impression. Other visualisation projects, such as
the visualisation of six design alternatives for an urban
regeneration project within the City of Glasgow, imposed very
similar requirements.

Figure 2. Top view of the amusement park with 1 million triangles.

2.3 Level of Detail
Modelling the environment has to strike a balance between
enabling high-quality street level views while keeping the polygon
count low enough to enable smooth top views. Ideally, one would
start with a highly detailed model from which automatic levels of
detail are automatically generated. In practice, however, automatic
polygon reduction often results in rather awkward looking
buildings. Manually creating enough LOD models to enable
smooth switching is rarely realistic within the given project
budgets.

In the case of the amusement park visualisation, there was no
level of detail switching implemented for any of the architectural
elements. Instead, the original block model was refined within a
given polygon budget. For other projects based on a city
environment, a low-resolution “blue block” model was available
for general overviews (approximately 350,000 triangles), and
textured high-resolution models of selected individual buildings
could be switched on manually where required.

Given the huge difference between the low-resolution base
model and the high quality textured version, manual selection of
the LOD was considered preferable. Instead of surprising the
audience with sudden and potentially erratic changes, changing to
a high-resolution view was made part of the presentation
narrative.

Nonetheless, it is our hope that future modelling tools will
introduce automatic level of detail generation suitable for
architectural and urban visualisation. In particular, new modelling
paradigms such as grammar-based hierarchies [2] have the
potential of offering progressive refinement without introducing
disturbing artefacts.

3 CONTENT CREATION TOOL CHAIN
The visualisation project uses a range of commercially available
software tools to implement the full tool chain from modelling to
the real-time presentation environment. Custom software
development is limited to the last element, the real-time viewing
environment, which includes automatic generation or instantiation
of scene elements and animation and all interaction.

All architectural models are built using an industry standard
animation/modelling package, 3D Studio Max. The modelling
tools are mature and well understood.

As none of the real-time rendering systems read 3D Studio data
files natively, all models must be converted into a portable data
format, in this case OpenFlight (FLT). Data conversion using a
tool such as Nugraf’s Polytrans is relatively straightforward as
long as the initial modelling takes the limitations of the target
format and converter into account, namely the restriction to the
basic Phong shading model with a single texture layer and
polygonal mesh modelling. Nonetheless, conversion remains
quirky in practice, requiring a significant amount of “cleaning up”
and effectively rendering the conversion process a one-way street.
Despite several attempts from both industry and academia, there
are no truly portable data formats and tools available that allow
going back and forth between real-time viewers and modelling
applications.

Multigen-Paradigm’s Creator application takes a central role in
the content creation process. Creator is used to clean up the
OpenFlight data files after export and define the final object
hierarchy including level of detail switches and transformation/
animation nodes. It is also used to tweak material parameters,
textures and assign CG shaders to parts of the geometry.

Additional tools used for content creation include Bionatic’s
RealNat vegetation modelling system and Right Hemisphere’s
Deep Exploration software used to simplify polygonal models.

3.1 Real-time Environment
Once the models and environment items are converted into a
format suitable for real-time display (e.g. OpenFlight) they must
be loaded and assembled into a scene graph within a real-time
display environment. There are a range of toolkits available, both
commercial (e.g. VEGA Prime, Quest 3D, EON, etc.) and open-
source (OpenSceneGraph, OpenSG, VRJuggler, etc.). While the
freely available scene graph and VR application toolkits offer
excellent rendering performance and a rich feature set, they lack
the rapid development environments of their commercial
counterparts. The time saved by defining complex object
hierarchies and parameters through an intuitive GUI before any
code is written can quickly justify the seemingly high licence cost.

The visualisation of the amusement park is based on the
Multigen-Paradigm VEGA Prime software development
environment. VEGA Prime has a strong following within the
simulator market segment thanks to its capability of handling
large environments and terrain. It is also well suited for large area
urban visualisation projects. Application development is based on

standard C++ code and libraries, with an additional tool (Lynx) to
define and test the object hierarchy and special effects.

3.2 Issues
The content creation tool chain has one major weakness that
should be addressed: It is essentially a one-way street. Each stage
in the modelling process introduces certain node types and
optimisations that are not transferable back to the original
modelling environment. If errors in the model are detected late, or
if changes in the original model are requested, a large portion of
the model optimisation and tweaking stage has to be repeated
manually. Any late change request therefore has significant cost
and time implications, and the model must be carefully reviewed
after every conversion step. Breaking the model into more
manageable sections reduces that cost, but the inevitable errors
that occur still result in relatively high conversion times that are
easily underestimated during initial project planning.

4 POPULATING THE ENVIRONMENT
The basic environment model including the ground plane, all
buildings and static cars consists of approximately 200k triangles.
This is easily handled by modern graphics hardware. While such a
model is effective at presenting the overall structure, it is
insufficient to convey the excitement that should go with a theme
park. A range of animated objects and special effects were
therefore added. Most of these objects are not part of the original
3DSMax model, instead they are either added programmatically
(props, vegetation, crowds and shadows) or within the real-time
modelling tool, Creator (shaders, texture layers).

4.1 Props
The basic architectural design was populated with a large amount
of small props to add life and excitement. In particular, animated
items attract a lot of attention. A significant number of static props
were added during the modelling stage. This includes parked cars,
benches, tents, lamps, etc. Some elements of the amusement park,
particularly the rides and carousels, were included within the
static model and then animated manually. A lot of life is added
through cars that drive around the outer ring road and a number of
rocking sailboats within a pond.

The impact of props on the total geometry count is easily
underestimated. Traffic is very light in this simulation, with only
30 cars on the road. However, each car model (labelled as “real
time models” by the library vendor) includes between 20,000 and
30,000 triangles, adding up to a million triangles for the cars alone
in a top view. Fortunately, automatic LOD generation using Deep
Exploration worked well for the cars, bringing the total polygon
count down to a reasonable level. Nonetheless, a busy city scene
could easily include several hundred cars.

4.2 Vegetation
Realistic trees and bushes are a key element for any parkland
scene, and also often feature prominently in urban visualisations.
Fortunately, there are a range of commercial tools and libraries
available to grow virtual plants suitable to real-time environments.

The amusement park model is populated with 490 instances of
13 different tree models generated with Bionatic’s RealNat
Premium software. Each model includes five levels of detail, from
a high-polygon model (up to 1,500 triangles) down to a basic
textured billboard cross. Thanks to the efficient LOD generation,
the vegetation does not overly stretch the polygon count; however
each tree model comes with between 4 to 8 MB of texture data,
which effectively limits the number of vegetation models to be
used simultaneously. To avoid an overly uniform look of the trees,
all instances are stretched and rotated randomly; a casual observer

barely notices the very small number of different vegetation
models. Hedges are modelled as simple polygonal boxes with an
RGBA texture.

Texture filtering becomes an issue when rendering vegetation.
As the scene graph does not provide depth-sorting at primitive
level, semi-transparent vegetation results in ugly halo effects.
Short of implementing custom primitive sorting, the only
available solution is to use nearest neighbour texture interpolation
therefore avoiding semi-transparent alpha values. For static
viewpoints, the resulting aliasing is not disturbing as plants are
inherently noisy, but it becomes obvious when moving.
Fortunately, enabling the multi-sampling feature of the graphics
hardware reduces aliasing to an acceptable level.

4.3 Crowds
Any urban scene looks artificial and lifeless without animated
humans, regardless of modelling quality and special effects.
Modelling and animating crowds has been an active area of
research for several years with impressive results. Unfortunately,
crowd simulation is not yet available as a standard feature within
the tools used here. Due to time und budget constraints, only a
simplistic crowd animation model could be developed: A set of
paths (polyline with a width attribute) is defined along which
humans move. At the start, humans are scattered along the path
with a random side offset and walking speed. At each frame, the
position is moved along the path with the given speed. Random
speed changes are introduced to break up visible patterns. No
further strategies (e.g. collision detection, crowd behaviour, etc.)
are implemented. Each human is represented as a billboard rotated
around the Z-axis to face the camera. A range of textures is used
to generate diversity.

Despite the simplistic nature of the animation system, the
results are actually quite impressive especially when viewed from
a higher perspective. Having thousands of people moving within
the park adds a very lifelike quality to an otherwise empty
environment. Even from a pedestrian’s viewpoint, where the
artificial nature of the crowd becomes obvious, they add a feeling
for the scale of the environment.

Figure 3. A busy bazaar area with hundreds of people.

Crowd simulation comes at a cost. Populating the whole 1 km
square area with a reasonable amount of people requires the
simulation of approximately 4,000 humans. Within the
application, updating their position and rotating the billboards is
the single most expensive operation outside the rendering process
and takes 3.5 ms on a Xeon 3.6 GHz processor. While some of
that overhead (rotation and interpolation) could be moved into a
vertex shader, it is nonetheless an indication of how many
individual objects can be animated before the frame rate suffers.

A full agent-based simulation for each individual human within
this large area and population density is probably not within reach
today (e.g. [3] cites 7.5ms per frame to simulate 500 agents
without animation), but it is also not required for this type of
application. Instead, a level of detail approach could be taken

where only humans nearby are simulated at high fidelity while the
rest follows simplistic paths as described above. A focus must be
set on making such technology easy and fast to use within a
commercial system, as it is unlikely that a client would budget for
a significant amount of scripting effort.

4.4 Shadows
Shadows are arguably the single most important visual effect for
architectural visualisation. They greatly support the understanding
of the spatial relationship of objects. Computer graphics literature
lists a large range of shadow rendering algorithms, yet
commercial real-time rendering systems often only support
rudimentary shadows.

The size of the environment causes some difficulties for
shadow simulation. Algorithms based on the projection of the
geometry onto the ground plane, as provided by the toolkit, place
a significant burden per frame onto the rendering pipeline. They
also fail to simulate shadows cast onto buildings or props nearby.
Texture-based algorithms such as depth maps are not supported
by the scene graph used here. In any case, they would require very
large texture maps to provide a sufficient resolution, taking a
significant toll on texture memory and rendering performance.
Calculating shadows offline and storing them as textures
(“baking”) results in very large texture sizes as well and precludes
time of day simulation that was considered important for the
visualisation of the amusement park.

Acknowledging the importance of shadows while not having
the required tools available led to the implementation of a low-
fidelity solution. Shadows are created by rendering a single dark
quad primitive with a semi-transparent alpha texture, creating a
smooth impression of a shadow underneath each object. The
corners of the quad represent the convex hull of a box around the
shadow caster projected onto the ground plane. Different shadow
textures are used to at least provide a hint of the original shape of
the associated object. Despite the gross simplification, these fake
shadows provide enough cues to avoid the effect of hovering
objects with very little computational overhead. The shadows are
particularly successful at providing more definition to the
billboard humans that would otherwise almost disappear from a
bird’s perspective and to avoid the impression of trees hovering
above the grass. The simulation includes 605 shadows for general
objects and 4,000 shadows attached to humans.

4.5 Shaders and Special Effects
Shaders and special effects were used sparingly. The water
surface of the pond includes animated bump maps read at two
different scales for the simulation of waves, a sky texture for
reflections and a granite slab texture whose coordinates are
perturbed to simulate refraction. Grass areas include a large base
colour texture with two layers of noise added depending on the
distance, avoiding visible tiling artefacts. A vertex shader is used
to animate the flags. Particle systems are used to simulate
fountains. The effects were chosen with a view to generating
maximum visual impact while keeping development time low and
staying true to the overall visual style.

Additional vertex shaders were considered to move crowd
animation onto the GPU. However, there would be no positive
impact on the total frame rate as animation is currently calculated
outside the rendering thread. The frame rate is limited by the
rendering thread (typically between 30 and 50ms), all other
calculations including culling, shadow calculations, animations
etc. fit within a 10 to 15 ms time slot in the application thread. In
a properly multi-threaded environment, there is nothing to be
gained by moving animation code onto the GPU unless such a
step would also reduce memory bandwidth to the graphics

hardware, or animation would be too complex to fit within the
time slot on its dedicated CPU core.

Figure 4. Special effects in the central area: Particle fountain,

shadows, water surface and animated flags.

4.6 Scene Complexity
In total, the amusement park scene complexity adds up to about
1.8 million triangles, including 200k for the base environment,
900k for the cars, 7.5k for the boats, 16k for human billboards,
and 600k for trees. LOD switching reduces that number to
roughly one million triangles per frame when rendering a top
view, resulting in approximately 20 frames per second on a
Geforce 8800GTX graphics board at 1080p HD resolution. In this
case study, the props dominate the scene complexity, but they are
an essential part of the presentation narrative. On the other hand,
building detail typically dominates scene complexity in
visualisation projects within an urban context, where the
assessment of the visual impact within a given environment is
more important than conveying the excitement of an amusement
park.

5 CONCLUSIONS
Developing the visualisation of the amusement park highlighted
several shortcomings of the content creation pipeline, namely the
lack of portable data formats to enable a two-way workflow.
Given the importance of introducing life to the environment,
crowd simulation should be considered as a standard feature for
real-time visualisation tools in the future, whereas vegetation is
reasonably well covered today. Similarly, implementing efficient
shadow algorithms should be a priority.

Despite the ever increasing power of GPUs, scene complexity
for urban and architectural models of this size will easily exceed
the capacity of current and the next few hardware generations
unless clever data reduction techniques are applied. Given the
importance of top-views where visibility culling becomes less
efficient, we would particularly hope for efficient level of detail
generation tools suitable for architectural models.

Despite such deficiencies, real-time visualisation of urban
models for city planning and architectural project presentation or
critique is a commercial reality today that has been received
enthusiastically by a range of clients.

REFERENCES
[1] Peter Wonka, Michael Wimmer, Dieter Schmalstieg. Visibility

Preprocessing with Occluder Fusion for Urban Walkthroughs
Proceedings of the Eurographics Workshop on Rendering 2000. pp
71-82. June 2000.

[2] Pascal Mueller, Peter Wonka, Simon Haegler, Andreas Ulmer and
Luc Van Gool. Procedural Modeling of Buildings. Proceedings of
ACM SIGGRAPH 2006 / ACM Transactions on Graphics. pp 614-
623, Vol. 25, No. 3, ACM Press, August 2006.

[3] Mankyu Sung, Michael Gleicher and Stephen Chenney. Scalable
Behaviors for Crowd Simulation, Computer Graphics Forum 23,
3(2004) (Eurographics '04).

	1 Introduction
	2 Visualisation Requirements
	2.1 Presenting the Model
	2.2 The Impact of Viewpoints
	2.3 Level of Detail

	3 Content Creation Tool Chain
	3.1 Real-time Environment
	3.2 Issues

	4 Populating the Environment
	4.1 Props
	4.2 Vegetation
	4.3 Crowds
	4.4 Shadows
	4.5 Shaders and Special Effects
	4.6 Scene Complexity

	5 Conclusions

